K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

Chọn C.

Đường thẳng d có VTCP 

Đường thẳng d’ có VTCP 

13 tháng 9 2018

8 tháng 1 2017

Đáp án A.

Đường thẳng d qua điểm M(2;-2;1) và có vectơ chỉ phương  u → = ( - 3 ; 1 ; - 2 )

Đường thẳng d' qua điểm N(0;4;2) và có vectơ chỉ phương  u ' → = 6 ; - 2 ; 4

Ta có - 3 6 = 1 - 2 = - 2 4  nếu u → ,   u ' →  cùng phương. Lại có   M 2 ; - 2 ; - 1  

Vậy  d ∥ d '

30 tháng 6 2017

Chọn B

Gọi (P) là mặt phẳng chứa hai đường thẳng d₁ và d₂

Khi đó (P) đi qua M (0;-1;0) và có cặp véctơ chỉ phương 

Gọi  là VTPT của (P). Khi đó 

Phương trình (P): -8x+3y+2z+3=0

Gọi H là giao điểm của đường thẳng d₂ và (P):

Đường thẳng d đi qua H và có VTCP   có phương trình:

18 tháng 6 2019

Chọn A.

Gọi ∆ là đường thẳng cần tìm

Đường thẳng d có vecto chỉ phương  a d → = 0 ; 1 ; 1

Ta có A(2;3;3); B(2;2;2)

∆ đi qua điểm A(2;3;3) và có vectơ chỉ phương 

Vậy phương trình của ∆ là

27 tháng 7 2018

Chọn đáp án C

14 tháng 8 2019

Chọn A.

Ta có A(2;3;3); B(2;2;2)

Δ đi qua điểm A(2;3;3) và có vectơ chỉ phương  A B → = 0 ; - 1 ; 1

Vậy phương trình của ∆ là x = 2 y = 3 - t z = 3 - t

28 tháng 11 2018
18 tháng 3 2017

NV
14 tháng 4 2022

Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)

Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:

\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)

\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)

\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)

6 tháng 11 2019

Đáp án B.

Ta có: Hai vector chỉ phương của hai đường thẳng là cùng phương nên hai đường thẳng luôn đồng phẳng.

Vector chỉ phương của đường thẳng d là u → = ( 1 ; - 2 ; - 1 )

Vector pháp tuyến của mặt phẳng

 

Phương trình mặt phẳng