cho a và n thuộc N*
và an chia hết cho 5
Chứng minh rằng a2+150 chia hết cho 25
ai nhanh mình sẽ tích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Vì tổng của 2 số đó không chia hết cho 2
=>Tổng của chúng là số lẻ
=>Không thể cả 2 số đều cùng chẵn hoặc cùng lẻ
=>Có 1 số chẵn và 1 số lẻ
=>Tích của chúng là số chẵn(vì số nào nhân với số chẵn đều được tích là số chẵn)
=>Tích của chúng chia hết cho2
2)Ta có: a+a2=a.(a+1)
Vì a là số tự nhiên
=>a có 2 dạng là 2k hoặc 2k+1
Xét a=2k=>a.(a+1)=2k.(a+1) chia hết cho 2
=>a+a2 chia hết cho 2(1)
Xét a=2k+1=>a.(a+1)=a.(2k+1+1)=a.(2k+2)=a.(k+1).2 chia hết cho 2
=>a+a2 chia hết cho 2(2)
Từ (1) và (2) ta thấy: a+a2 chia hết cho 2
=>ĐPCM
c) Giải: 11a + 2b chia hết cho 12 (đề cho) (1)
11a + 2b + a + 34b
= (11a + a) + ( 2b + 34b)
= 12a + 36b
Vì: 12a chia hết cho 12, 36 chia hết cho 12
Suy ra: 12a + 36b chia hết cho 12 (2)
Từ (1) và (2) suy ra : a + 34b chia hết cho 12
Vì a+b chia hết cho 2 mà ta lại có 2b chia hết cho 2 với mọi b thuộc N nên:
a+b+2b chia hết cho 2 hay a+3b chia hết cho 2
=>ĐPCM
Ta có: \(a⋮̸5\)
\(b⋮̸5\)
Do đó: \(\left\{{}\begin{matrix}a+b⋮̸5\\a-b⋮̸5\\ab⋮̸5\end{matrix}\right.\)
Ta có: \(a^4-b^4\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\)
\(=\left(a-b\right)\left(a+b\right)\cdot\left[\left(a+b\right)^2-2ab\right]⋮̸5\)
Những đứa viết ''chtt'' là những đứa học dốt,lười suy nghĩ,chỉ biết ăn hôi bài người khác để kiếm tick
=>đó là những đứa nhục nhã,tham lam,lười biếng.
a ⋮ c => ma ⋮ c (1)
b ⋮ c => nb ⋮ c (2)
Từ (1) ; (2) => ma + nb ⋮ c ( tính chất )
Cũng Từ (1) ; (2) => ma - nb ⋮ c ( tính chất )