ho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng 45°. Hình chiếu vuông góc của A’ trên (ABC) là trung điểm của AB. Mặt phẳng (AA'C'C) tạo với đáy một góc bằng 45°. Tính thể tích V của khối lăng trụ ABC.A'B'C'.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H, M, I lần lượt là trung điểm của các đoạn thẳng AB, AC, AM.
Ta có IH là đường trung bình của tam giác AMB, MB là trung tuyến của tam giác đều ABC.
Do đó:
⇒ A ' I H ^ là góc gữa hai mặt phẳng (AA'C'C) và (ABCD)
⇒ A ' I H ^ = 45 °
Trong tam giác A'HI vuông tại H, ta có:
Đáp án D
Ta có góc giữa cạnh bên AA' với mặt đáy (ABC) là:
góc A ' A H ^ và tan A ' A H = A ' H A H
Suy ra A ' H = a 2 . tan 30 ° = a 3 6
Do đó V = A ' H . S A B C = a 3 6 . a 2 3 4 = a 3 8
Chọn B.
Phương pháp:
- Xác định góc 60 0 (góc giữa hai đường thẳng cùng vuông góc với giao tuyến).
- Tính diện tích đáy và chiều cao rồi suy ra thể tích theo công thức V = Sh.
Cách giải:
Gọi H, M, I lần lượt là trung điểm của các đoạn thẳng AB, AC, AM.
Ta có IH là đường trung bình của tam giác AMB, MB là trung tuyến của tam giác đều ABC.
Trong tam giác A'HI vuông tại H, ta có: