K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

 ta có :

S = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

S x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

S x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

S x 3 = 99x100x101

S = 99x100x101 : 3

S = 333300

7 tháng 5 2017

\(=\frac{1.2}{99.100}\)

\(=\frac{2}{9900}=\frac{1}{4950}\)

23 tháng 7 2023

\(1,\\ =\dfrac{2-1}{1\times2}+\dfrac{3-2}{2\times3}+\dfrac{4-3}{3\times4}+\dfrac{5-4}{4\times5}+.....+\dfrac{99-98}{98\times99}+\dfrac{100-99}{99\times100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{100-1}{100}=\dfrac{99}{100}\)

\(2,=\dfrac{13-11}{11\times13}+\dfrac{15-13}{13\times15}+....+\dfrac{21-19}{19\times21}+\dfrac{23-21}{21\times23}\\ =\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+....+\dfrac{1}{19}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{23}\\ =\dfrac{1}{11}-\dfrac{1}{23}\\ =\dfrac{23-11}{11\times23}=\dfrac{12}{253}\)

@seven

a: 1/1*2+1/2*3+...+1/99*100

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100

=99/100

b: 2/11*13+2/13*15+...+2/21*23
=1/11-1/13+1/13-1/15+...+1/21-1/23

=1/11-1/23

=12/253

27 tháng 3 2015

rút gọn là được mà ! 

 

27 tháng 3 2015

\(\frac{1}{2}\)

13 tháng 8 2018

      C=1x2+2x3+3x4 +......+99x100

<=>3xC=1x2x3+2x3x3+.....+99x100x3

<=>3xC=1x2x3+2x3x(4-1)+.....+99x100x(101-98)

<=>3xC=1x2x3-1x2x3+2x3x4-2x3x4+......-98x99x100+99x100x101

<=>3xC=99x100x101   <=> C=99x100x101 :3    <=> C= 333300

13 tháng 8 2018

\(C=1.2+2.3+3.4+...+99.100\)

=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + ...+ 99.100.3

3C = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ...+ 99.100.(101-98)

3C = 1.2.3 + 2.3.4 -1.2.3 + 3.4.5 - 2.3.4 + ...+ 99.100.101-98.99.100

\(3C=\left(1.2.3+2.3.4+3.4.5+...+99.100.101\right)-\left(1.2.3+2.3.4+...+98.99.100\right)\)

\(3C=99.100.101\Rightarrow C=\frac{99.100.101}{3}=333300\)

Dấu . là dấu nhân

3C = 3 x C

3 tháng 9 2018

P = 2 x 3 + 3 x 4 + ...+ 99 x 100

=> 3 x P = 2 x 3 x 3 + 3 x 4 x 3 + ....+ 99 x 100 x 3

3 x P = 2 x 3 x ( 4-1) + 3 x 4 x (5-2) + ...+ 99 x 100 x ( 101 -98)

3 x P = 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4  x  5- 2 x 3 x 4 + ...+ 99 x 100 x 101 - 98 x 99 x 101

3 x P = ( 2  x 3  x 4 + 3 x 4 x  5 + ...+ 99 x 100 x 101) - ( 1 x 2 x 3 + 2 x 3  x 4 + ...+ 98 x 99 x 101)

3 x P = 99  x 100 x 101 - 1 x 2  x 3

\(P=\frac{99x100x101-1x2x3}{3}=333298\)

3 tháng 9 2018

p=2.3+3.4+4.5+5.6+...+99.100

3p=2.3.3+3.4.3+4.5.3+5.6.3+...+99.100.3

3p=2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+5.6.(7-4)+...+99.100.(101-98)

3p=2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+5.6.7-4.5.6+99.100.101-98.99.100

3p=98.99.100-1.2.3

p=\(\frac{98.99.100-1.2.3}{3}=323398\)

15 tháng 5 2015

dau . la dau x

a/ 1.3.2.4.3.5.4.6.5.7/2.2.3.3.4.4.5.5.6.6=1.7/2.6=7/12

b/ ab.aba=abab

        aba=abab:ab

        aba=101

=>a=1     b=0

aabb : ab = 99 hay ab x 99 = aabb hay  ab x100 – ab = aabb

Ta có phép tính

                  __  ab00

                      ___ab___

                        aabb

 b=0 hoặc b=5

Nếu b=0 thì    a000 – a0 = aa00  (sai)

Nếu b=5 thì  

                   __  a500

                        __a5___

                        aa55

            a=4

c) thay a=7/6 b=6/5 thi 3 x a + 4 : b - 5/12=3.7/6+4.6/5-5/12=7/2+24/5-5/12=210/60+288/60-25/60=473/60

**** nha

\(\frac{1.3.2.4.3.5.4.6.5.7}{2.2.3.3.4.4.5.5.6.6}=\frac{\left(2.3.4.5.6\right).\left(3.4.5.7\right)}{\left(2.3.4.5.6\right).\left(2.3.4.5.6\right)}=\frac{7}{12}\)

13 tháng 7 2017

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{98\times99}+\frac{1}{99\times100}\)

\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+....+\frac{99-98}{98\times99}+\frac{100-99}{99\times100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

13 tháng 7 2017

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)