Tính :
a,A = 1002+2002+3002+...+10002
b,\(B=\frac{4^9.36+64^4}{16^4.100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4^9.36+64^4/16^4.100
A= 262144.36+256.100
A=9437184+25600
A=9462784
\(A=\frac{4^9.36+64^4}{16^4.100}=\frac{2^{20}.\left(9+16\right)}{2^{18}.5^2}=\frac{2^{20}.5^2}{2^{18}.5^2}=2^2=4\)
\(C=\dfrac{4^9.36+64^4}{16^4.100}=\dfrac{4^9.36+4^{12}}{4^9.25}=\dfrac{4^9\left(36+4^3\right)}{4^9.25}=\dfrac{100}{25}=4\)
a)\(A=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{3.16}{2^4}=\frac{3.2^4}{2^4}=3\)
b)\(B=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}\left(13+65\right)}{2^8.2^3.13}=\frac{2^{10}.78}{2^{11}.13}=3\)
c)\(C=\frac{4^9.36+64^4}{16^4.100}=\frac{2^{18}.2^2.3^2+2^{24}}{2^{16}.2^2.5^2}=\frac{2^{20}\left(3^2+2^4\right)}{2^{18}.5^2}=\frac{2^2.25}{25}=4\)
B = 4^9.36+64^4
16^4.100
B = 2^20.(9+16)
2^18.5^2
B = 2^20.5^2
2^18.5^2
B = 2^2
B = 4
D = 4^6.3^4.9^5
6^12
D = 2^12.3^4.9^5
2^12.3^12
D = 2^12.3^14
2^12.3^12
D = 3^2
D = 9
\(\frac{4^9.36+64^4}{16^4.100}=\frac{4^{10}\left(9+8\right)}{4^{10}.25}=\frac{17}{25}\)
A=1002(1+22+32+....+102)=1002.375=375.104
B=\(\frac{4^{8^{ }}.4.6^2+4^{8^{ }}.4^4}{4^8.10^2}\)=\(\frac{4^{8^{ }}.2^2.6^2+4^{8^{ }}.4^4}{4^8.10^2}\)=\(\frac{4^{8^{ }}.2^2.6^2+4^8.2^2.2^6}{4^8.2^2.5^2}\)=\(\frac{4^8.2^2\left(6^2+2^6\right)}{4^8.2^2.5^2}\)=\(\frac{6^2+2^6}{5^2}\)
B=48.4.62+48.44:48.102