Tìm hai số tự nhiên m và n (14 < m <n) có tích bằng 5488, biết rằng ƯCLN của chúng bằng 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(ƯCLN\left(m,n\right)=14\)nên ta đặt \(m=14a,n=14b\)\(1< a< b,\left(a,b\right)=1\).
\(mn=14a.14b=196ab=5488\Leftrightarrow ab=28\)
mà \(1< a< b,\left(a,b\right)=1\)nên ta có:
\(\hept{\begin{cases}a=4\\b=7\end{cases}}\Rightarrow\hept{\begin{cases}m=56\\n=98\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm hai số tự nhiên liên tiếp m và n biết: m < 15,1354 < n
A. m = 14; n = 17 B. m = 15; n = 16
C. m = 13; n = 16 D. m = 12; n = 18
HT
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(m=13a,n=13b\)khi đó \(\left(a,b\right)=1,1< a< b\).
\(mn=13a.13b=169ab=2535\Leftrightarrow ab=15=1.15=3.5\)
Vì \(1< a< b,\left(a,b\right)=1\)nên ta chỉ có trường hợp:
\(\hept{\begin{cases}a=3\\b=5\end{cases}}\Rightarrow\hept{\begin{cases}b=3.13=39\\b=5.13=65\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
m, n là 2 số tự nhiên mà 10 < m < n < 14
\(\Rightarrow\left(m,n\right)\in\left\{\left(11;12\right),\left(12;13\right),\left(11;13\right)\right\}\)
Vậy \(\left(m,n\right)\in\left\{\left(11;12\right),\left(12;13\right),\left(11;13\right)\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)