K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{x}+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{2009}{2010}\)

\(1-\frac{1}{x+1}=\frac{2009}{2010}\)

\(\frac{1}{x+1}=1-\frac{2009}{2010}=\frac{1}{2010}\)

\(\Leftrightarrow\) x + 1=  2010 

< = > x = 2010 - 1 = 2009

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

20 tháng 1 2018

a, Ta có \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)

<=> \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}-\frac{x-4}{2008}=0\)

<=> \(\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)-\left(\frac{x-3}{2009}-1\right)-\left(\frac{x-4}{2008}-1\right)=0\)

<=>\(\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\) 

<=> \(\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)

=> \(x-2012=0=>x=2012\)

20 tháng 1 2018

b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2x-1\right)\left(2x+1\right)}=\frac{49}{99}\)

=>\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2x-1\right)\left(2x+1\right)}=2\cdot\frac{49}{99}\)

=>\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{98}{99}\)

=>\(1-\frac{1}{2x+1}=\frac{98}{99}\)

=>\(\frac{2x}{2x+1}=\frac{98}{99}\)

=>2x = 98

=>x = 49

2 tháng 11 2018

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{9.10}\right)\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)

\(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{9}-\frac{1}{10}\right)\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)

\(\Rightarrow\left(1-\frac{1}{10}\right)\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)

\(\Rightarrow\frac{9}{10}.\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)

\(\Rightarrow\frac{9}{10}x-\frac{9}{10}+\frac{1}{10}x=x-\frac{9}{10}\)

\(\Rightarrow\left(\frac{9}{10}x+\frac{1}{10}x\right)-\frac{9}{10}=x-\frac{9}{10}\)

\(\Rightarrow x-\frac{9}{10}=x-\frac{9}{10}\)

\(\Rightarrow x\inℝ\)

Vậy \(x\inℝ\)

12 tháng 6 2018

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)

         \(\frac{11}{45}.x=\frac{23}{45}\)

                  \(x=\frac{23}{45}:\frac{11}{45}\)

                 \(x=\frac{23}{11}\)

12 tháng 6 2018

Gọi A=(1/1.2.3+ 1/2.3.4 +...+ 1/8.9.10) .x=23/45

    2A=3-1/1.2.3+ 4–2/2.3.4+ 5–4/3.4.5+ ... + 10–8/8.9.10

    2A=1/2 —1/2.3+ 1/2.3 — 1/3.4+ 1/3.4– 1/4.5 +...+1/8.9–1/9.10=1/2–1/9.10=44/90

     A=44/90 : 2=22/90

     x=23/45:A= 23/45 : 22/90=23/11= 2 1/1( hỗn số)

    

21 tháng 10 2018

\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+........+\frac{1}{99\cdot100}\right)-2x=\frac{1}{2}\)

\(\left(\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+...+\frac{100-99}{99\cdot100}\right)-2x=\frac{1}{2}\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\)

\(\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\)

\(\frac{99}{100}-2x=\frac{1}{2}\)

\(2x=\frac{99}{100}-\frac{1}{2}\)

\(2x=\frac{49}{100}\)

\(x=\frac{49}{100}:2\)

\(x=\frac{49}{200}\)

21 tháng 10 2018

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\)

\(\frac{99}{100}-2x=\frac{1}{2}\)

\(\frac{99-50}{100}=2x\)

\(49=200x\)

\(x=\frac{49}{200}\)