1 hộp đựng 10 viên bi. Trong đó có 6 viên bo xanh và 4 viên bi vàng .Hỏi có bao nhiêu cách lấy đồng thời từ hộp ra 3 viên bi trong đó : a) Đúng 2 viên bi xanh b) ít nhất 2 viên bi xanh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số cách chọn là:
\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)
b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)
Số cách chọn 9 viên ko có đủ 3 màu là:
\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)
=>Có 4939 cách
Các trường hợp xảy ra theo yêu cầu đề:
Trường hơp 1: 2 xanh, 2 vàng, 2 đỏ, có: cách.
Trường hợp 2: 2 xanh,1 vàng, 3 đỏ, có: cách.
Vậy có : cách.
Chọn D.
Để lấy ra 5 viên khác màu thì mỗi viên ít nhất có 1 màu.
Lần đầu, nếu không may, ta sẽ bốc được 4 viên bi trắng.(.( không lấy màu khác vì đề yêu cầu ít nhất ))
Lần thứ hai, tiếp tục bốn tiếp được 6 viên đen.
Lần 3 bốc được 25 viên bi đỏ. ( lấy lần lượt các số tăng dần )
Lần 4, bốc được 30 viên xanh.
Và lần cuối chỉ còn viên vàng trong hộp nên ta chỉ lấy 1 viên.
Tổng số viên phải lấy là:\(4+6+25+30+1=66\left(vi\text{ê}n\right)\)
vậy...........
Số cách lấy ra là:
\(C^1_3\cdot C^3_9+C^2_3\cdot C^2_9+C^3_3\cdot C^1_9=369\left(cách\right)\)
Đáp án C
Để xác định biến cố, ta xét các trường hợp sau:
+) 2 bi xanh và 1 bi đỏ, suy ra có C 5 2 . C 4 1 = 40 cách.
+) 3 bi xanh và 0 bi đỏ, suy ra có C 5 3 = 10 cách.
Suy ra xác suất cần tính là P = 40 + 10 C 9 3 = 25 42
a. Lấy ra 2 xanh (nghĩa là 2 xanh 1 vàng)
Có \(C_6^2.C_4^1=60\) cách
b. Lấy ra ít nhất 2 viên xanh có 2 TH: 2 xanh 1 vàng hoặc cả 3 xanh
Có: \(60+C_6^3=80\) cách