K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

Có 

Chọn đáp án D.

18 tháng 9 2018

\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)

=>B

\(P=loga^3+logb^2=log\left(a^3b^2\right)=log\left(100\right)=10\)

4 tháng 11 2018

Đáp án C

Vì OA, OB, OC đôi một vuông góc với nhau  1 d 2 = 1 O A 2 + 1 O B 2 + 1 O C 2

Với d là khoảng cách từ  O  -> (ABC) suy ra  1 d 2 = 1 a 2 + 1 b 2 + 1 c 2

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức, ta có     x 2 a + y 2 b + z 2 c ≥ x + y + z 2 a + b + c

Vậy  d   m a x   = 1 3

NV
25 tháng 3 2022

\(\sum\dfrac{a}{\sqrt{ab+b^2}}=\sum\dfrac{a\sqrt{2}}{\sqrt{2b\left(a+b\right)}}\ge\sum\dfrac{2\sqrt{2}a}{2b+a+b}=2\sqrt{2}\sum\dfrac{a}{a+3b}\)

\(=2\sqrt{2}\sum\dfrac{a^2}{a^2+3ab}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)

\(=\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3\sqrt{2}}{2}\)

1 số giao điểm của đồ thị hàm số y=\(x^3+3x^2+1\) và trục hoành là A. 3 B. 0 C. 2 D. 1 2 tập nghiệm của bất phương trình \(4^x-5.2^x+4\) >0 là 3 trong ko gian, cho hình chữ nhật ABCD, AB=2a và AC=3a. Khi quay hình chữ nhật ABCD quanh cạnh AB thì đường gấp khúc BCDA tạo thành một hình trụ. Diện tích xung quanh của hình trụ đó bằng 4 Hinh phẳng giới hạn bởi các đường x=-1,x=2,y=0, y=x^2-2x có diện tích được tính theo...
Đọc tiếp

1 số giao điểm của đồ thị hàm số y=\(x^3+3x^2+1\) và trục hoành là

A. 3 B. 0 C. 2 D. 1

2 tập nghiệm của bất phương trình \(4^x-5.2^x+4\) >0 là

3 trong ko gian, cho hình chữ nhật ABCD, AB=2a và AC=3a. Khi quay hình chữ nhật ABCD quanh cạnh AB thì đường gấp khúc BCDA tạo thành một hình trụ. Diện tích xung quanh của hình trụ đó bằng

4 Hinh phẳng giới hạn bởi các đường x=-1,x=2,y=0, y=x^2-2x có diện tích được tính theo công thức là

5 Gọi \(z_0\) là nghiệm phức có phần ảo dương của phương trình \(z^2-2z+10=0\) . Mô đun của phức phức w=i\(z_0\) bằng

6 trong khong gian oxyz, cho điểm A(6;-3;9) có hình chiếu vuông góc trên các trục Ox, Oy,Oz ka2 B,C,D.Gọi G là trọng tâm tam giác BCD . Phương trình của đường thẳng OG là

7 cho cấp sốc nhân (\(u_n\) ) vói \(u_1=\frac{1}{2}\) và công bội q=2. Gía trị của u\(u_{10}\) bằng

A \(2^8\) B \(2^9\) C \(\frac{1}{2^{10}}\) D \(\frac{37}{2}\)

8 nghiệm của pt \(3^{2x^2+1}\) =\(27^x\)

9 thể tích khối lập phương cạnh bằng 5

10 tập xác định của hàm số y=\(5^x\)

A \(R\backslash\left\{0\right\}\) B\(\left(0,+\infty\right)\) C \(\left(-\infty;+\infty\right)\) D[\(0;+\infty\))

11 Diện tích của một mặt cầu bằng \(16\pi\) (\(cm^2\) ) . Bán kính mặt cầu đó là

12 Cho a là số thực dương bất kí, giá trị nào dưới đây có cùng giá trị với log(10a^3)?

A 3loga B 10log\(a^3\) C 1+3loga D 3log(10a)

13 Diện tích xung quanh của hình trụ có diện tích một đấy là S và độ dài đường sinh l bằng ?

14 tiệm cận đúng đồ thị hàm số \(y=\frac{x-2}{x+1}\)

15 bất phương trình \(log_2\left(x^2+2x+1\right)>1\) có tập nghiệm là

16 cho I \(\int_0^2f\left(x\right)dx=3\) . Khi đó J=\(\int_0^2\left[4f\left(x\right)-2x\right]dx\) bằng

17 số phức liên hợp của số phức z=(1-3i).(2+2i) là

5
NV
5 tháng 6 2020

15.

ĐKXĐ: \(x^2+2x+1>0\Rightarrow x\ne-1\)

\(\Leftrightarrow log_2\left(x^2+2x+1\right)>log_22\)

\(\Leftrightarrow x^2+2x+1>2\)

\(\Leftrightarrow x^2+2x-1>0\Rightarrow\left[{}\begin{matrix}x< -1-\sqrt{2}\\x>-1+\sqrt{2}\end{matrix}\right.\)

16.

\(J=4\int\limits^2_0f\left(x\right)dx-\int\limits^2_02xdx=4.3-x^2|^2_0=8\)

17.

\(z=2+2i-6i-6i^2=8-4i\)

\(\Rightarrow\overline{z}=8+4i\)

NV
5 tháng 6 2020

11.

\(S=4\pi R^2\Rightarrow R=\sqrt{\frac{S}{4\pi}}=2\left(cm\right)\)

12.

\(log\left(10a^3\right)=log10+loga^3=1+3loga\)

13.

\(S=\pi R^2\Rightarrow R=\sqrt{\frac{S}{\pi}}\)

\(\Rightarrow S_{xq}=2\pi R.l=2\pi\sqrt{\frac{S}{\pi}}.l=2l.\sqrt{\pi S}\)

14.

\(\lim\limits_{x\rightarrow-1}\frac{x-2}{x+1}=-\infty\Rightarrow x=-1\) là tiệm cận đứng

23 tháng 8 2020

Áp dụng bất đẳng thức Bunyakovsky ta được:          \(\left(ab+bc+ca+1\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\right)\ge\left(a+b+c+1\right)^2\)\(\left(ab+bc+ca+1\right)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+1\right)\ge\left(b+c+a+1\right)^2\)

Cộng theo vế hai bất đẳng thức này ta được \(\left(ab+bc+ca+1\right)\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge2\left(a+b+c+1\right)^2\)hay \(\frac{ab+bc+ca+1}{\left(a+b+c+1\right)^2}\ge\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đến đây, ta quy bất đẳng thức cần chứng minh về dạng:\(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Áp dụng bất đẳng thức Cauchy ta được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\)\(\ge2\sqrt{\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}}\)\(=\sqrt{\sqrt[3]{\frac{a^2b^2c^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}}=\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)

Cũng theo bất đẳng thức Cauchy ta được \(\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}+\frac{1}{4}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge2\sqrt{\frac{1}{4}}=1\)(**)

Từ (*) và (**) suy ra được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra a = b = c = 1

2 tháng 5 2017

20 tháng 8 2020

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được 

\(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\)

Ta lại có  \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)

Do đó ta được \(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{a^2+b^2+c^2}{3}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

p/s: check