K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

192

Đáp án A

23 tháng 3 2019

Chọn A.

Dễ thấy un là cấp số nhân với q = 10

Ta có: u8 = 107u1; u10 = 109u1

Do đó PT 

Giải PT ta được logu1 = -17 u1 = 10-17 u2018 = 102017 u1 = 102000 

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

26 tháng 3 2019

13 tháng 9 2017

Đáp án B.

Đặt  t = 2 + log   u 1 - 2 log   u 10 ≥ 0

⇔ 2 log   u 1 - 2 log   u 10 = t 2 - 2 , 

khi đó giả thiết trở thành:

log   u 1 - 2 log   u 10 + 2 + log   u 1 - 2 log   u 10 = 0

⇔ t 2 + t - 2 = 0  

<=> t = 1 hoặc t = -2

⇒ log   u 1 - 2 log   u 10 = - 1

⇔ log   u 1 + 1 = 2 log   u 10

⇔ log 10 u 1 = log u 10 2 ⇔ 10 u 1 = u 10 2   ( 1 )

Mà un+1 = 2un => un là cấp số nhân với công bội q = 2

=> u10 = 29 u1 (2)

Từ (1), (2) suy ra

10 u 1 = 9 9 u 1 2 ⇔ 2 18 u 1 2 = 10 u 1 ⇔ u 1 = 10 2 18

⇒ u n = 2 n - 1 . 10 2 18 = 2 n . 10 2 19 .

Do đó  u n > 5 100 ⇔ 2 n . 10 2 19 > 5 100

⇔ n > log 2 5 100 . 2 19 10 = - log 2 10 + 100 log 2 5 + 19 ≈ 247 , 87

Vậy giá trị n nhỏ nhất thỏa mãn là n = 248.

5 tháng 5 2018

Đk: x > -1/3

<=> 3x+1 < x+7

<=> x < 3

kết hợp đk --> -1/3 < x < 3

--> nghiệm nguyên của x = { 0; 1 ; 2 }

NV
1 tháng 8 2020

Đặt \(log_5\left(x+5\right)=a\Rightarrow x+5=5^a\)

\(\Rightarrow a^2-\left(m+6\right)log_25^a+m^2+9=0\)

\(\Leftrightarrow a^2-a\left(m+6\right)log_25+m^2+9=0\)

\(\Delta=\left(m+6\right)^2.log^2_25-4\left(m^2+9\right)\ge0\)

\(\Leftrightarrow\left(log^2_25-4\right)m^2+\left(12log_2^25\right).m+36\left(log_2^25-1\right)\ge0\)

Bấm máy BPT trên và lấy số nguyên gần nhất ta được \(m\ge-2\Rightarrow\)\(20+2+1=23\) giá trị nguyên của m

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

a, Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên hàm số nghịch biến trên \(\left(0;+\infty\right)\)

Mà \(4,8< 5,2\Rightarrow log_{\dfrac{1}{2}}4,8>log_{\dfrac{1}{2}}5,2\)

b, Ta có: \(log_{\sqrt{5}}2=2log_52=log_54\)

Hàm số \(y=log_5x\) có cơ số 5 > 1 nên hàm số đồng biến trên \(\left(0;+\infty\right)\)

Do \(4>2\sqrt{2}\Rightarrow log_54>log_52\sqrt{2}\Rightarrow log_{\sqrt{5}}2>log_52\sqrt{2}\)

c, Ta có: \(-log_{\dfrac{1}{4}}2=-\dfrac{1}{2}log_{\dfrac{1}{2}}2=log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}\)

Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên nghịch biến trên \(\left(0;+\infty\right)\)

Do \(\dfrac{1}{\sqrt{2}}>0,4\Rightarrow log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}< log_{\dfrac{1}{2}}0,4\Rightarrow-log_{\dfrac{1}{4}}2< log_{\dfrac{1}{2}}0,4\)

18 tháng 1 2018

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)