K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

\(2999\equiv1\left(mod2\right);1998\equiv0\left(mod2\right);1003\equiv1\left(mod2\right)\\ \Rightarrow2999^{2013}-1998^{2012}-1003^{2013}\equiv1^{2013}-0^{2012}-1^{2013}=0\left(mod2\right)\)

Vậy ta đc đpcm

15 tháng 10 2015

b;

bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.

.......................................................................3......n=3k và 3k + 1 và 3k+2

c;

bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9

d;tương tự b

e;g;tương tự a

15 tháng 10 2015

Cần chứng minh hiệu này chia hết cho 10

Ta có :

\(2999^{2013}-2011^{2000}=\left(...9\right)^{4.503}.\left(...9\right)-\left(...1\right)=\left(...1\right).\left(...9\right)-1=\left(....9\right)-1=\left(...8\right)\)không chia hết cho 10

Xem lại đề

15 tháng 10 2015

29992013 = (...1)

20112000 = (...1)

=> 29992013 - 20112000 = (...0) chia hết cho 2 & 5 (đpcm)

 

5 tháng 4 2015

vì số có chữ số tận cùng là 0 thì sẽ chia hết cho 2 và 5

vậy ta xét chữ số tận cùng của phép tính 20112012 - 20132012

20112012  có chữ số tận cùng là: 12012 = 14.503 = ( ....1)

20132012 có chữ số tận cùng là : 32012 = 34.503 = (....1)

20112012 - 20132012 = (....1) - (.....1) = (.....0)

vì kết quả của phép tính trên có chữ số tận cùng là 0 nên:

20112012 - 20132012 chia hết cho 2 và 5

 

5 tháng 4 2015

tìm hiệu của 2 chữ số tận cùng rồi => đpcm

10 tháng 2 2018

a, 5M = 5+1+1/5+1/5^2+.....+1/5^2011

4M=5M-M=(5+1+1/5+1/5^2+.....+1/5^2011)-(1+1/5+1/5^2+.....+1/5^2012)

               = 5-1/5^2012

=> M = (5 - 1/5^2012)/4

Tk mk nha

19 tháng 11 2016

Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)

\(A=2n+\left(...6\right)+\left(...1\right)\)

Ta có : 2n là số chẵn

\(2012^{2013}\) là số chẵn

\(2013^{2012}\) là số lẻ

\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ

Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ

=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )

14 tháng 3 2022

vì n+2012 và n+2013 là 2 số tự nhiên liên tiếp

mà 2 số tự nhiên liên tiếp nhân với nhau có tận cùng là chữ số chắn

=> chia hết cho 2