1.2.3....2016-1.2.3....2015-1.2.3....2015^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12.22.32-\(\frac{2015}{1.2.3}\)+12.22.32.42-\(\frac{2015}{1.2.3.4}\)
=36 +576 - (\(\frac{2015}{1.2.3}\)+\(\frac{2015}{1.2.3.4}\))
= 612-\(\frac{10075}{24}\)
=\(\frac{4613}{24}\)
b) 52x-3 - 2.52 = 52 .3
52x-3 - 2.25 = 25 .3
52x-3 - 50 = 75
52x-3 = 75 + 50
52x-3 = 125
52x-3 = 53
2x-3 = 3
2x = 3 + 3
2x = 6
x = 6 : 2
x = 3
Vậy x = 3
x+(x+1)+(x+2)+...+(x+30)=1240
x+x+1+x+2+...+x+30=1240
(x+x+x+...+x)+(1+2+...+30)=1240
31x+465=1240
31x=1240-456
31x=784
x=784:31
x=784/31
Vậy x=784/31
\(P=\frac{3}{1!\left(1+2\right)+3!}+\frac{4}{2!\left(1+3\right)+4!}+...+\frac{2017}{2015!\left(1+2016\right)+2017!}\)
\(P=\frac{3}{3\left(1!+2!\right)}+\frac{4}{4\left(2!+3!\right)}+...+\frac{2017}{2017\left(2015!+2016!\right)}\)
\(P=\frac{1}{1!+2!}+\frac{1}{2!+3!}+...+\frac{1}{2015!+2016!}\)
Ta có \(a!>\sqrt{a}\)\(\left(a\inℕ;a>1\right)\) do đó :
\(P>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}\)
\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\)
\(\frac{\sqrt{2016}-\sqrt{2015}}{\left(\sqrt{2016}+\sqrt{2015}\right)\left(\sqrt{2016}-\sqrt{2015}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2016}\)
\(-\sqrt{2015}=\sqrt{2016}-1=\frac{1}{2}+\left(\sqrt{2016}-\frac{3}{2}\right)=\frac{1}{2}+\left(\sqrt{2016}-\sqrt{\frac{9}{4}}\right)>\frac{1}{2}\)
Vậy \(P>\frac{1}{2}\)
Chúc bạn học tốt ~
PS : tự nghĩ bừa thui nhé :))
rút 1.2.3...2015 ra ta có
1.2.3...2015(2016-1-2015)
1.2.3...2015.0
=0
nhanh len cac ban