Chứng minh rằng:
Tích của 4 số chẵn liên tiếp luôn chia hết cho 192
Thanks !!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Gọi 3 số chẵn liên tiếp là 2k, 2k+2, 2k+4
Ta có: 2k(2k+2)(2k+4)=8k(k+1)(k+2)
Ta lại có: k, k+1,k+2 là 3 số nguyên liên tiếp nên \(k\left(k+1\right)\left(k+2\right)⋮2\)và \(k\left(k+1\right)\left(k+2\right)⋮3\)
vì (2,3)=1 nên \(k\left(k+1\right)\left(k+2\right)⋮2.3=6\)
lúc đó \(8k\left(k+1\right)\left(k+2\right)⋮8.6=48\)
Vậy tích của 3 số chẵn liên tiếp sẽ chia hết cho 48 (ĐPCM)
Gọi 2k ; 2k+2 là hai số chẵn liên tiếp với k là số nguyên
Tích của hai số này là 4k.(k+1)
Ta có k.(k+1) luôn chia hết cho 2 => 4k.(k+1) luôn chia hết cho 8
NHỚ K MÌNH NHA CHÚC BẠN HỌC GIỎI
Gọi hai số chẵn liên tieepslaf 2k và 2k+2(k thuộc N)
Ta có:2k.(k+2)=2k.2.(k+1)=4k.(k+1)
Vì k và k+1 là hai số tự nhiên liên tiếp nên k.(k+1)chia hết cho 2
do đó 4k.(k+1) chia hết cho 2.4
4k.(k+1) chia hết cho 8
Vậy tích hai số chẵn liên tiếp chia hết cho 8
3 dấu chia hết ở đầu bạn thay hộ mik là bằng dấu chia hết nhé
Nguồn : Câu hỏi của vodichbang - Toán lớp 6 - Học toán với OnlineMath
< https://olm.vn/hoi-dap/detail/27730911397.html >
gọi 4 số chẵn liên tiếp đó là: 2k;2k+2;2k+4;2k+6
ta có tích của 4 số đó là:
2k.(2k+2).(2k+4).(2k+6) =2.k.2.(k+1).2.(k+2).2.(k+3)
=24
.[k.(k+1).(k+2).(k+3)]
=16.[k.(k+1).(k+2)(k+3)]
lại có:
k;k+1;k+2;k+3 là 4 số tự nhiên liên tiếp nên:
+)Tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 4=>k.(k+1).(k+2).(k+3) chia hết cho (2.4)=8
+Tồn tại số chia hết cho 3 =>k.(k+1).(k+2).(k+3) chia hết cho 3
Mà (3;8)=1 =>k.(k+1).(k+2).(k+3) chia hết cho (3.8)
k.(k+1).(k+2).(k+3) chia hết cho 24
=>16.[k.(k+1).(k+2)(k+3)] chia hết cho 24
mà 16.[k.(k+1).(k+2)(k+3)] chia hết cho 16
=>16.[k.(k+1).(k+2)(k+3)] chia hết cho (24.16)
=>16.[k.(k+1).(k+2)(k+3)] chia hết cho 384 (đpcm)
--> a.(a+1) là số chẵn --> a(a+1).(a+2) chia hết cho 2
--> a.(a+1).(a+2) là số chẵn --> a.(a+1).(a+2) chia hết cho 2
Vậy tích 3 STNLT thì chi hết cho 2(1)
1. TRƯỜNG HỢP 1 : a = 3.k
Ta có : a.(a+1).(a+2) = 3.k.(3.k+1).(3.k+2)chia hết cho 3
2. TRƯỜNG HỢP 2 : a = 3.k+1
Ta có : a.(a+1).(a+2) = (3.k+1).(3.k+2).(3.k+3)
= (3.k+1).(3.k+2).3.(k+1) chia hết cho 3
3.TRƯỜNG HỢP 3 : a = 3.k+2
Ta có : a.(a+1).(a+2) = (3.k+2).(3.k3).(3.k+4)
= (3.k+2).(3.k+4).3.(k+1) chia hết cho 3
VẬY TÍCH 3 STNLT THÌ CHIA HẾT CHO 3(2)
Từ (1).(2) --> tích ba STNLT thì chia hết cho 6
Mình không có ý kiến về câu trả lời của bạn Nguyễn Vũ Hải Linh
Nhưng mình có góp ý là bạn nên thêm 1 câu là: tích 3 STNLT chia hết cho 3 và 2 mà 3 và 2 là hai số nguyên tốt cùng nhau nên tích 3 STNLT chia hết cho 6 thì hợp lí hơn
tui lam cau b nhe
gọi chẵn 1 là a,chẵn 2 là b
vì a,b chẵn ,liền nhau=>a chia hết cho 4,b ko chia hết cho 4 hoặc b chia hết cho 4,a ko chia hết cho 4
=>a+b ko chia hết cho 4
1. TRƯỜNG HỢP 1 : a = 3.k
Ta có : a.(a+1).(a+2) = 3.k.(3.k+1).(3.k+2)chia hết cho 3
2. TRƯỜNG HỢP 2 : a = 3.k+1
Ta có : a.(a+1).(a+2) = (3.k+1).(3.k+2).(3.k+3)
= (3.k+1).(3.k+2).3.(k+1) chia hết cho 3
3.TRƯỜNG HỢP 3 : a = 3.k+2
Ta có : a.(a+1).(a+2) = (3.k+2).(3.k3).(3.k+4)
= (3.k+2).(3.k+4).3.(k+1) chia hết cho 3
VẬY TÍCH 3 STNLT THÌ CHIA HẾT CHO 3 (2) --> tích ba STNLT thì chia hết cho
Hai số chẵn liên tiếp có dạng là 2k và (2k+1) với kEN
Tích của hai số này là 4k(k+1)
Ta có: k.(k+1) chia hết cho 2
Suy ra: 4k(k+1)chia hết cho 8
Vậy suy ra ĐPCM
Cố gắng lên nha bạn!
Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k thuộc Z)
Xét: 2k(2k + 2) = 4k(k + 1)
Vì 4 chia hết cho 4; k(k + 1) chia hết cho 2 (tích 2 số chẵn liên tiếp)
=> 4k(k + 1) chia hết cho 8
hay 2k(2k + 2) chia hết cho 8
Vậy: 2 số chẵn liên tiếp luôn chia hết cho 8
a.(a+2).(a+4).(a+6)=
chắc đến đây bạn tự làm đc rồi đó
khó vậy sao mình giải được