a) a+2c/ b+2d = a-2c/ b-2d
b) a^2 +c^2 / b^2 + d^2 = ac/bd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2c+15d}{5c-7d}\)
\(\Leftrightarrow\left(2a+15b\right)\left(5c-7d\right)=\left(5a-7b\right)\left(2c+15d\right)\)
\(\Leftrightarrow10ac-14ad+75bc-105bd=10ac+75ad-14bc-105bd\)
\(\Leftrightarrow-14ad+75bc=-14bc+75ad\)
=>ad=bc
hay a/b=c/d
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)
\(\dfrac{2c^2-ac}{2d^2-bd}=\dfrac{2\cdot d^2k^2-bk\cdot dk}{2\cdot d^2-bd}=k^2\)
Do đó; \(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Do đó:
\(\left(\dfrac{a+2c}{b+2d}\right)^2=\left(\dfrac{bk+2dk}{b+2d}\right)^2=k^2\left(1\right)\)
Mà
\(\dfrac{a^2+2c^2}{b^2+2d^2}=\dfrac{b^2k^2+2d^2k^2}{b^2+2d^2}=k^2\left(2\right)\)
Từ (1) và (2) ta suy ra đpcm
Đề phải thêm là \(\frac{a}{b}=\frac{c}{d}\) nhé.
a)
b)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
(1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)
Chúc bạn học tốt!
Đề bài yêu cầu gì?