K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

3 2 x + 6 - x - 6 2 x 2 + 6 x

Bài 1: 

b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)

Bài 2: 

a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)

\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)

d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)

\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)

e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)

2 tháng 8 2023

\(\dfrac{6}{x^2+4x}+\dfrac{3}{2x+8}\\ =\dfrac{6}{x\left(x+4\right)}+\dfrac{3}{2\left(x+4\right)}\\ =\dfrac{6.2}{2x\left(x+4\right)}+\dfrac{3x}{2x\left(x+4\right)}\\ =\dfrac{12+3x}{2x\left(x+4\right)}\\ =\dfrac{3\left(4+x\right)}{2x\left(x+4\right)}\\ =\dfrac{3}{2x}\)

________

\(\dfrac{x+1}{x-2}+\dfrac{x-2}{x+2}+\dfrac{x-14}{x^2-4}\\ \left(\text{đ}k\text{x}\text{đ}:x\ne\pm2\right)\\ =\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}+\dfrac{x-14}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x^2+2x+x+2+x^2-4x+4+x-14}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{2x^2-8}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{2\left(x^2-4\right)}{x^2-4}\\ =2\)

 

a: \(=\dfrac{6}{x\left(x+4\right)}+\dfrac{3}{2\left(x+4\right)}\)

\(=\dfrac{12+3x}{2x\left(x+4\right)}=\dfrac{3\left(x+4\right)}{2x\left(x+4\right)}=\dfrac{3}{2x}\)

b: \(=\dfrac{\left(x+1\right)\left(x+2\right)+\left(x-2\right)^2+x-14}{x^2-4}\)

\(=\dfrac{x^2+3x+2+x^2-4x+4+x-14}{x^2-4}=\dfrac{2x^2-8}{x^2-4}=2\)

21 tháng 12 2021

\(=\dfrac{3}{2\left(x+3\right)}+\dfrac{6-x}{2x\left(x+3\right)}=\dfrac{3x+6-x}{2x\left(x+3\right)}=\dfrac{2x+6}{2x\left(x+6\right)}=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}=\dfrac{1}{x}\)

21 tháng 12 2021

\(=\dfrac{3x+6-x}{2x\left(x+3\right)}=\dfrac{2x+6}{2x\left(x+3\right)}=\dfrac{1}{x}\)

Bài 3:

3: \(6x\left(x-y\right)-9y^2+9xy\)

\(=6x\left(x-y\right)+9xy-9y^2\)

\(=6x\left(x-y\right)+9y\left(x-y\right)\)

\(=\left(x-y\right)\left(6x+9y\right)\)

\(=3\left(2x+3y\right)\left(x-y\right)\)

Bài 4:

loading...

loading...

loading...

11 tháng 11 2021

\(=\dfrac{-3\left(x-1\right)}{\left(1+x\right)^2}\cdot\dfrac{x+1}{6\left(x-1\right)\left(x+1\right)}\left(x\ne\pm1\right)\\ =\dfrac{-1}{2\left(x+1\right)^2}\)

22 tháng 8 2021

\(\left(x-6\right)\left(x+6\right)-2x\left(x+6\right)+\left(x+6\right)^2=x^2-36-2x^2-12x+x^2+12x+36=0\)

Ta có: \(\left(x-6\right)\left(x+6\right)-2x\left(x+6\right)+\left(x+6\right)^2\)

\(=x^2-36-2x^2-12x+x^2+12x+36\)

=0

6 tháng 8 2018

\(a,\left(3x+x\right)\left(x^2-9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)

\(=4x\left(x^2-9\right)-x^3+27\)

\(=4x^3-36x-x^3+27\)

\(=3x^3-36x+27\)

6 tháng 8 2018

\(\left(x+6\right)^2-2x.\left(x+6\right)+\left(x-6\right).\left(x+6\right)\)

\(=\left(x+6\right).\left(x+6-2x+x-6\right)\)

\(=\left(x+6\right).0\)

\(=0\)

23 tháng 12 2023

Câu 5: B

Câu 6: 

a: ĐKXĐ: \(x-2\ne0\)

=>\(x\ne2\)

b: ĐKXĐ: \(x+1\ne0\)

=>\(x\ne-1\)

8:

\(A=\dfrac{x^2+4}{3x^2-6x}+\dfrac{5x+2}{3x}-\dfrac{4x}{3x^2-6x}\)

\(=\dfrac{x^2+4-4x}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)

\(=\dfrac{\left(x-2\right)^2}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)

\(=\dfrac{x-2+5x+2}{3x}=\dfrac{6x}{3x}=2\)

7: 

\(\dfrac{8x^3yz}{24xy^2}\)

\(=\dfrac{8xy\cdot x^2z}{8xy\cdot3y}\)

\(=\dfrac{x^2z}{3y}\)

17 tháng 9 2021

\(1,=\left(x+3\right)\left(x-2\right):\left(x+3\right)=x-2\\ 2,=\left(x-5\right)\left(x+6\right):\left(x+6\right)=x-5\\ 3,=\left[3x\left(2x-1\right)-5\right]:\left(2x-1\right)=3x.dư.\left(-5\right)\)

17 tháng 9 2021

1)\(\left(x+x^2-6\right):\left(x+3\right)=\left[x\left(x+3\right)-2\left(x+3\right)\right]:\left(x+3\right)=\left[\left(x+3\right)\left(x-2\right)\right]:\left(x+3\right)=x-2\)

2) \(\left(x+x^2-30\right):\left(x+6\right)=\left[x\left(x+6\right)-5\left(x+6\right)\right]:\left(x+6\right)=\left[\left(x+6\right)\left(x-5\right)\right]:\left(x+6\right)=x-5\)

3) \(\left(5-3x+6x^2\right):\left(2x-1\right)=\left[3x\left(2x-1\right)+5\right]:\left(2x-1\right)=3x+\dfrac{5}{2x-1}\)

a: \(\dfrac{x^2}{3x+6}+\dfrac{4x+4}{3x+6}=\dfrac{x^2+4x+4}{3x+6}=\dfrac{x+2}{3}\)

b: \(\dfrac{x+3}{x}+\dfrac{x}{3-x}-\dfrac{9}{3x-x^2}\)

\(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}\)

=0