K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

a. Định nghĩa 1 : (Hàm số sin): Quy tắc tương ứng với mỗi số thực x với số thực sinx.

sin: R -> R

x -> y = sinx.

Hàm số y = sinx có tập xác định là R, tập giá trị là đoạn [-1;1].

b.Định nghĩa 2 : (Hàm số cosin): Quy tắc tương ứng với mỗi số thực x với số thực cosx.

cos : R -> R

x -> y = cosx.

Hàm số y = cosx có tập xác định là R, tập giá trị là đoạn [-1;1]

c. Định nghĩa 3: (Hàm số tang): Hàm số tang là hàm số được xác định bởi công thức

Giải bài 1 trang 178 sgk Đại số 11 | Để học tốt Toán 11

tan : D -> R

x -> y = tanx.

Hàm số y = tanx có tập xác định: Giải bài 1 trang 178 sgk Đại số 11 | Để học tốt Toán 11

Tập giá trị của hàm số y = tanx là R.

d. Định nghĩa 4 : (Hàm số cotang): là hàm số được xác định bởi công thức

Giải bài 1 trang 178 sgk Đại số 11 | Để học tốt Toán 11

cot : D -> R

x -> y = cotx.

Hàm số y = cotx có tập xác định D = {x ∈ R \ x ≠ kπ, k ∈ Z}. Tập giá trị của hàm số y = cotx là tập R.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Ví dụ hàm số   $y=\frac{-1}{2}x$

Ta có bảng sau:

 

Với mỗi giá trị của x ta có 1 giá trị của y, vậy bảng trên biểu thị cho 1 hàm số

Tập xác định của hàm số \(D = \left\{ { - 2; - 1; - \frac{1}{2};0;\frac{1}{2};1;2} \right\}\)

Tập giá trị của hàm số \(\left\{ {1;\frac{1}{2};\frac{1}{4};0; - \frac{1}{4}; - \frac{1}{2}; - 1} \right\}\)

28 tháng 11 2021

Lời giải:

a. ĐKXĐ: x ≠1

Tập giá trị: D= [-1 ,1]

 

b. ĐKXĐ: cos⁡x ≥ 0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Tập giá trị: D= [0,1]

28 tháng 11 2021

bạn giải rồi còn gì?

23 tháng 10 2017

1 tháng 12 2018

19 tháng 1 2017

Đáp án B

Điều kiện: x ≠ − m 2 .

y ' = m 2 − 4 2 x + m 2 ;

Hàm số đồng biến trên từng khoảng thuộc tập xác định

⇔ y ' > 0, ∀ x ≠ − m 2 ⇔ m 2 − 4 > 0, ∀ x ≠ − m 2 ⇔ m > 2.

Đồ thị này cắt trục Ox tại rất nhiều điểm chứ không phải chỉ có 1 điểm

=>Chọn C

19 tháng 6 2019

Chọn C

4 tháng 6 2019

Đáp án C

Ta có y ' = − m 2 + 2016 m + 2017 x + m 2 ,   y ' = 0  đồng biến trên từng khoảng xác định nếu

y ' > 0 ∀ x ∈ D ⇔ − m 2 + 2016 m + 2017 > 0 ⇔ m ∈ − 1 ; 2017

Ta đếm số nguyên trong

  − 1 ; 2017 thì có 2016 số nguyên trong đó.

24 tháng 9 2023

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)