a 60 độ
b 70 độ
c 50 độ
d 80 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a)Xét }\Delta ABC\text{ có:}\)
\(\widehat{A}>\widehat{B}>\widehat{C}\left(100^0>60^0>20^0\right)\)
\(\Rightarrow BC>AC>AB\text{(quan hệ giữa góc và cạnh đối diện trong tam giác)}\)
\(b)\text{Xét }\Delta ABC\text{ có:}\)
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\text{(tính chất tổng ba góc một tam giác)}\)
\(\Rightarrow\widehat{B}=180^0-\left(\widehat{A}+\widehat{C}\right)\)
\(\Rightarrow\widehat{B}=180^0-\left(70^0+50^0\right)=60^0\)
\(\text{Xét }\Delta ABC\text{ có:}\)
\(\widehat{A}>\widehat{B}>\widehat{C}\left(70^0>60^0>50^0\right)\)
\(\Rightarrow BC>AC>AB\text{(quan hệ giữa góc và cạnh đối diện trong tam giác)}\)
a) Do góc A > góc B > góc C nên BC > AC > AB.
b) Góc B=180o-(70o+50o)=60o.
Do góc A > góc B > góc C nên BC > AC > AB.
\(A=sin42^0-cos48^0=cos\left(90^0-42^0\right)-cos48^0=cos48^0-cos48^0=0\)
\(B=cot56^0-tan34^0=tan\left(90^0-56^0\right)-tan34^0=tan34^0-tan34^0=0\)
\(C=sin30^0-cot50^0-cos60^0+tan40^0\)
\(=cos\left(90^0-30^0\right)-tan\left(90^0-50^0\right)-cos60^0+tan40^0\)
\(=cos60^0-tan40^0-cos60^0+tan40^0=0\)
\(A=\sin42^0-\cos48^0=\sin42^0-\sin42^0=0\)
\(B=\cot56^0-\tan34^0=\tan34^0-\tan34^0=0\)
a:
b: \(B=3-sin^290^0+2\cdot cos^260^0-3\cdot tan^245^0\)
\(=3-1+2\cdot\left(\dfrac{1}{2}\right)^2-3\cdot1^2\)
\(=2-3+2\cdot\dfrac{1}{4}=-1+\dfrac{1}{2}=-\dfrac{1}{2}\)
c: \(C=sin^245^0-2\cdot sin^250^0+3\cdot cos^245^0-2\cdot sin^240^0+4\cdot tan55\cdot tan35\)
\(=\left(\dfrac{\sqrt{2}}{2}\right)^2+3\cdot\left(\dfrac{\sqrt{2}}{2}\right)^2-2\cdot\left(sin^250^0+sin^240^0\right)+4\)
\(=\dfrac{1}{2}+3\cdot\dfrac{1}{2}-2+4\)
\(=2-2+4=4\)
Góc BDC = Góc DBA = 90 độ, mà góc CAB - 50 độ => C = 360 - 180 - 50 = góc ACD
Xét tứ giác CMNE: góc CEN= 360 - góc ACD - 110 - 70=