1+2+3+4+...................+123=2001
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
g: \(=-457+237+23-123=-220-100=-320\)
h: \(=\left(1-3\right)+\left(5-7\right)+...+\left(41-43\right)+\left(45-47\right)\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+\left(-2\right)\)
\(=-2\cdot12=-24\)
i: \(=173+27-46-54-19=200-100-19=100-19=81\)
k: \(=-52+82+49-15+13-36\)
\(=30+34-23\)
=30+11
=41
l: \(=\left(3-5\right)+\left(7-9\right)+\left(11-13\right)+\left(15-17\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
=-8
m: \(=\left(1-2\right)+\left(3-4\right)+...+\left(2001-2002\right)+2003\)
\(=2003-1-1-...-1\)
\(=2003-1001=1002\)
n:Số số hạng là:
\(\left[\left(-51\right)-\left(-99\right)\right]:1+1=49\left(số\right)\)
Tổng là \(\left(-51-99\right)\cdot\dfrac{49}{2}=-3675\)
o: \(=-62-38+1523-2523-92\)
\(=-100+1000-92=900-92=808\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\left(+15\right)+\left(+17\right)=15+17=32\)
2) \(\left(-3\right)+\left(-7\right)=-3-7=-\left(3+7\right)=-10\)
3) \(\left(-25\right)+\left(+4\right)=-25+4=-\left(25-4\right)=-21\)
4) \(\left(-6\right)+\left(-54\right)=-6-54=-\left(6+54\right)=-60\)
5) \(\left(-15\right)+20=20-15=5\)
6) \(\left(-5\right)+8+7+5\)
\(=\left(-5+5\right)+\left(8+7\right)\)
\(=15\)
7) \(\left(-8\right)+\left(-11\right)+\left(-2\right)\)
\(=\left[\left(-8\right)+\left(-2\right)\right]+\left(-11\right)\)
\(=\left(-10\right)+\left(-11\right)\)
\(=-21\)
8) \(15+\left(-5\right)+\left(-14\right)+\left(-16\right)\)
\(=\left[15+\left(-5\right)\right]+\left[\left(-14\right)+\left(-16\right)\right]\)
\(=10+\left(-30\right)\)
\(=-20\)
9) \(\left(-20\right)+\left(-14\right)+3+\left(-86\right)\)
\(=\left[\left(-20\right)+3\right]+\left[\left(-14\right)+\left(-86\right)\right]\)
\(=\left(-17\right)+\left(-100\right)\)
\(=-117\)
10) \(\left(-136\right)+123+\left(-264\right)+\left(-83\right)+240\)
\(=\left[\left(-136\right)+\left(-264\right)\right]+\left[123+\left(-83\right)\right]+240\)
\(=\left(-400\right)+40+240\)
\(=\left(-360\right)+240\)
\(=-120\)
11) \(\left(-596\right)+2001+1999+\left(-404+189\right)\)
\(=\left(-596\right)+2001+1999-404+189\)
\(=\left[\left(-596\right)-404\right]+\left(2001+189\right)+1999\)
\(=\left(-1000\right)+2190+1999\)
\(=1190+1999\)
\(=3189\)
12) \(314+\left(-153\right)+64+121+\left(-247\right)+218\)
\(=\left(314+64+121\right)+\left[\left(-153\right)+\left(-247\right)\right]+218\)
\(=\left(378+121\right)+\left(-400\right)+218\)
\(=499-400+218\)
\(=99+218\)
\(=317\)
\(\text{#}Toru\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A = \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{2001}{3^{2001}}\)
3A = \(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{2001}{3^{2000}}\)
3A - A = ( \(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{2001}{3^{2000}}\) ) - ( \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{2001}{3^{2001}}\) )
2A = 1 + \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2000}}-\dfrac{2001}{3^{2001}}\)
Đặt B = 1 + \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2000}}\)
3B = 3 + 1 + \(\dfrac{1}{3}+...+\dfrac{1}{3^{1999}}\)
3B - B = ( 3 + 1 + \(\dfrac{1}{3}+...+\dfrac{1}{3^{1999}}\) ) - ( 1 + \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2000}}\) )
2B = 3 - \(\dfrac{1}{3^{2000}}\) -
B = \(\dfrac{3}{2}-\dfrac{1}{3^{2020}\cdot2}\)
Vậy 2A = \(\dfrac{3}{2}-\dfrac{1}{3^{2000}\cdot2}\) - \(\dfrac{2001}{3^{2001}}\)
A = \(\dfrac{3}{4}-\dfrac{1}{3^{2000}\cdot2^2}-\dfrac{1}{3^{2001}\cdot2}< \dfrac{3}{4}\)
Mà \(\dfrac{3}{4}< \dfrac{4}{5}\)
Vậy A \(< \dfrac{4}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1+(-2)+3+(-4)+...+2001+(-2002)
=[1+(-2)]+[3+(-4)]+...+[2001+(-2002)]
=(-1)+(-1)+...+(-1) (có 1001 số hạng)
=(-1).1001
=-1001
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(1-2-3+4+5-6-7+...+2001-2002-2003+2004\)
\(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2001-2002-2003+2004\right)\)
\(=0+0+...+0=0\)
b) \(1+2-3-4+5+6-7-8+...+2001+2002-2003-2004\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2001+2002-2003-2004\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=\left(-4\right)\cdot501=\left(-2004\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)