K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2023

tính = cách hợp lí nhất

g: \(=-457+237+23-123=-220-100=-320\)

h: \(=\left(1-3\right)+\left(5-7\right)+...+\left(41-43\right)+\left(45-47\right)\)

\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+\left(-2\right)\)

\(=-2\cdot12=-24\)

i: \(=173+27-46-54-19=200-100-19=100-19=81\)

k: \(=-52+82+49-15+13-36\)

\(=30+34-23\)

=30+11

=41

l: \(=\left(3-5\right)+\left(7-9\right)+\left(11-13\right)+\left(15-17\right)\)

\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)

=-8

m: \(=\left(1-2\right)+\left(3-4\right)+...+\left(2001-2002\right)+2003\)

\(=2003-1-1-...-1\)

\(=2003-1001=1002\)

n:Số số hạng là:

\(\left[\left(-51\right)-\left(-99\right)\right]:1+1=49\left(số\right)\)

Tổng là \(\left(-51-99\right)\cdot\dfrac{49}{2}=-3675\)

o: \(=-62-38+1523-2523-92\)

\(=-100+1000-92=900-92=808\)

25 tháng 11 2023

1) \(\left(+15\right)+\left(+17\right)=15+17=32\)

2) \(\left(-3\right)+\left(-7\right)=-3-7=-\left(3+7\right)=-10\)

3) \(\left(-25\right)+\left(+4\right)=-25+4=-\left(25-4\right)=-21\)

4) \(\left(-6\right)+\left(-54\right)=-6-54=-\left(6+54\right)=-60\)

5) \(\left(-15\right)+20=20-15=5\)

6) \(\left(-5\right)+8+7+5\)

\(=\left(-5+5\right)+\left(8+7\right)\)

\(=15\)

7) \(\left(-8\right)+\left(-11\right)+\left(-2\right)\)

\(=\left[\left(-8\right)+\left(-2\right)\right]+\left(-11\right)\)

\(=\left(-10\right)+\left(-11\right)\)

\(=-21\)

8) \(15+\left(-5\right)+\left(-14\right)+\left(-16\right)\)

\(=\left[15+\left(-5\right)\right]+\left[\left(-14\right)+\left(-16\right)\right]\)

\(=10+\left(-30\right)\)

\(=-20\)

9) \(\left(-20\right)+\left(-14\right)+3+\left(-86\right)\)

\(=\left[\left(-20\right)+3\right]+\left[\left(-14\right)+\left(-86\right)\right]\)

\(=\left(-17\right)+\left(-100\right)\)

\(=-117\)

10) \(\left(-136\right)+123+\left(-264\right)+\left(-83\right)+240\)

\(=\left[\left(-136\right)+\left(-264\right)\right]+\left[123+\left(-83\right)\right]+240\)

\(=\left(-400\right)+40+240\)

\(=\left(-360\right)+240\)

\(=-120\)

11) \(\left(-596\right)+2001+1999+\left(-404+189\right)\)

\(=\left(-596\right)+2001+1999-404+189\)

\(=\left[\left(-596\right)-404\right]+\left(2001+189\right)+1999\)

\(=\left(-1000\right)+2190+1999\)

\(=1190+1999\)

\(=3189\)

12) \(314+\left(-153\right)+64+121+\left(-247\right)+218\)

\(=\left(314+64+121\right)+\left[\left(-153\right)+\left(-247\right)\right]+218\)

\(=\left(378+121\right)+\left(-400\right)+218\)

\(=499-400+218\)

\(=99+218\)

\(=317\)

\(\text{#}Toru\)

19 tháng 11 2021
Co ai biet khong
4 tháng 4 2023

Đặt A = \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{2001}{3^{2001}}\)

3A = \(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{2001}{3^{2000}}\)

3A - A = ( \(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{2001}{3^{2000}}\) ) - ( \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{2001}{3^{2001}}\) )

2A = 1 + \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2000}}-\dfrac{2001}{3^{2001}}\)

Đặt B = 1 + \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2000}}\)

3B = 3 + 1 + \(\dfrac{1}{3}+...+\dfrac{1}{3^{1999}}\)

3B - B = ( 3 + 1 + \(\dfrac{1}{3}+...+\dfrac{1}{3^{1999}}\) ) - ( 1 + \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2000}}\) )

2B = 3 - \(\dfrac{1}{3^{2000}}\) - 

B = \(\dfrac{3}{2}-\dfrac{1}{3^{2020}\cdot2}\)

Vậy 2A = \(\dfrac{3}{2}-\dfrac{1}{3^{2000}\cdot2}\) - \(\dfrac{2001}{3^{2001}}\) 

A = \(\dfrac{3}{4}-\dfrac{1}{3^{2000}\cdot2^2}-\dfrac{1}{3^{2001}\cdot2}< \dfrac{3}{4}\)

Mà \(\dfrac{3}{4}< \dfrac{4}{5}\)

Vậy A \(< \dfrac{4}{5}\)

3 tháng 4 2019

= 1+1+1=3

3>\(\frac{3}{4}\)

23 tháng 4 2016

   1+(-2)+3+(-4)+...+2001+(-2002)

=[1+(-2)]+[3+(-4)]+...+[2001+(-2002)]

=(-1)+(-1)+...+(-1)                   (có 1001 số hạng)

=(-1).1001

=-1001

25 tháng 4 2016

cám ơn

16 tháng 1 2019

a) \(1-2-3+4+5-6-7+...+2001-2002-2003+2004\)

  \(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2001-2002-2003+2004\right)\)

  \(=0+0+...+0=0\)

b) \(1+2-3-4+5+6-7-8+...+2001+2002-2003-2004\)

   \(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2001+2002-2003-2004\right)\)

   \(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)

   \(=\left(-4\right)\cdot501=\left(-2004\right)\)