Chứng minh số 2 là số vô tỉ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1
\(\implies\) \(b\sqrt{2}=a\)
\(\implies\) \(b^2.2=a^2\)
\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố
\(\implies\) \(a\) chia hết cho \(2\)
\(\implies\) \(a^2\) chia hết cho \(4\)
\(\implies\) \(b^2.2\) chia hết cho \(4\)
\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố
\(\implies\) \(b\) chia hết cho \(2\)
\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)
\( \implies\) Điều giả sai
\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )
b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )
\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ
Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ
\( \implies\) Mâu thuẫn
\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )
) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b ∈
N* ) ; ( a ; b ) = 1
⟹
b√2=a
⟹
b2.2=a2
⟹
a2 chia hết cho 2 ; mà 2
là số nguyên tố
⟹
a chia hết cho 2
⟹
a2 chia hết cho 4
⟹
b2.2 chia hết cho 4
⟹
b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2
⟹
(a;b)=2 mâu thuẫn với (a;b)=1
⟹
Điều giả sử sai
⟹
√2 là số vô tỉ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b ∈
N* ) ; ( a ; b ) = 1
⟹
b√2=a
⟹
b2.2=a2
⟹
a2 chia hết cho 2 ; mà 2
là số nguyên tố
⟹
a chia hết cho 2
⟹
a2 chia hết cho 4
⟹
b2.2 chia hết cho 4
⟹
b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2
⟹
(a;b)=2 mâu thuẫn với (a;b)=1
⟹
Điều giả sử sai
⟹
√2 là số vô tỉ
a) Giả sử x + y là số hữu tỉ => x + y = a (a \(\in\) Q)
=> y = a - x, là số hữu tỉ, trái với đề bài
=> điều giả sử là sai
=> x + y là số vô tỉ (đpcm)
lm tương tự vs câu b
a) Có x thuộc Q; y thuộc I
Giả sử x + y = a thuộc Q
=> y = a - x thuộc Q (vì x thuộc Q)
Điều này trái với giả thiết y thuộc I
=> Điều giả sử là sai
=> x + y là số vô tỉ
Vậy x thuộc Q; y thuộc I thì x + y là số vô tỉ.
b) Có x thuộc Q; y thuộc I
Giả sử x - y = a thuộc Q
=> y = x - a thuộc Q (vì x thuộc Q)
Điều này trái với giả thiết y thuộc I
=> Điều giả sử là sai
=> x - y là số vô tỉ
Vậy x thuộc Q; y thuộc I thì x - y là số vô tỉ.
Giả sứ tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ
=>a+b=c, trong đó a,c là số hữu tỉ,b là số vô tỉ=>b=c-a mà a,c là số hữu tỉ=>c-a là số hữu tỉ=>b là số hữu tỉ(trái với đề bài)
=>Giả sứ sai=> đpcm
Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.
Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒⇒ b=c-a mà a và c là các số hữu tỉ ⇒⇒ a-c là số hữu tỉ ⇒⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒⇒ đpcm
Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.
Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒⇒ b=c-a mà a và c là các số hữu tỉ ⇒⇒ a-c là số hữu tỉ ⇒⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒⇒ đpcm
Giả sử 2 không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho 2 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.
Ta có: ( 2 )2 = a / b 2 hay a 2 = 2 b 2 (1)
Kết quả trên chứng tỏ a là số chẵn, nghĩa là ta có a = 2c với c là số nguyên.
Thay a = 2c vào (1) ta được: 2 c 2 = 2 b 2 hay b 2 = 2 c 2
Kết quả trên chứng tỏ b phải là số chẵn.
Hai số a và b đều là số chẵn, trái với giả thiết a và b không có ước chung nào khác 1 và -1.
Vậy 2 là số vô tỉ.