Cho tam giác ABC có cạnh BC = 10cm, CA = 14cm, AB = 6cm. Tam giác ABC đồng dạng với tam giác DEF có cạnh nhỏ nhất là 9cm. Tính các cạnh còn lại của tam giác DEF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\Delta ABC~\Delta DEF\)
\(\Rightarrow\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}\)
Ta có cạnh nhỏ nhất của \(\Delta ABC\)là 6 cm mà cạnh nhỏ nhất của \(\Delta DEF\)là 9 cm
vậy \(\Rightarrow DE=9cm\)
Độ dài cạnh DE là : \(\frac{AB}{DE}=\frac{AC}{DF}\Leftrightarrow\frac{6}{9}=\frac{14}{DF}\)
\(\Rightarrow DF=\frac{14.9}{6}=21cm\)
Độ dài cạnh EF là : \(\frac{AB}{DE}=\frac{AC}{DF}\Leftrightarrow\frac{6}{9}=\frac{10}{EF}\)
\(\Rightarrow EF=\frac{10.9}{6}=15cm\)
Chúc bạn học tốt !
Bài làm
Gọi độ dài của DF là x
Độ dài của EF là y
Vì tam giác ABC ~ Tam giác DEF
=>
hay
Vậy DF = 21 ( cm )
EF = 15 ( cm )
# Vô thống kê của mik xem hình #
Ta có: ΔABC∼ΔDEF
nên AB/DE=BC/EF=AC/DF
=>6/9=10/EF=14/DF
=>10/EF=14/DF=2/3
=>EF=15cm; DF=21cm
6.)
Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.
Theo đề:\(A'B'\)=4,5
Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)
\(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)
ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF
=>4/DE=6/EF=8/DF
=>2/DE=3/EF=4/DF=9/9=1
=>DE=2cm; EF=3cm; DF=4cm
Bài 7:
Đặt a=A'B',b=A'C', c=B'C'
Theo đề,ta có: a/6=b/8=c/10
mà cạnh nhỏ nhất trong tam giác A'B'C' là 9cm
nên b/8=c/10=9/6=3/2
=>b=12cm; c=15cm
Tam giác A'B'C' đồng dạng với tam giác ABC có cạnh nhỏ nhất bằng 4,5 nên cạnh nhỏ nhất của △ A'B'C' tương ứng với cạnh AB nhỏ nhất của △ ABC
Giả sử A'B' là cạnh nhỏ nhất 'của Δ A'B'C'
Vì △ A'B'C' đồng dạng △ ABC nên
Thay AB = 3(cm), AC = 7(cm), BC = 5(cm), A'B' = 4,5(cm) vào (1) ta có:
Vậy: