Tìm x \(\in\)Z sao cho : (x -1) (x + 3) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
![](https://rs.olm.vn/images/avt/0.png?1311)
+)vì (x-3)(2y+1)=7 Nên Ta có bảng:
x-3 | -7 | 7 | -1 | 1 |
x | -4 | 10 | 2 | 4 |
2y+1 | -1 | 1 | -7 | 7 |
y | -1 | 0 | -4 | 3 |
Vậy x=-4 thì y=-1
x=10 thì y=0
x=2 thì y=14
x=4 thì y=3
+)Tìm x,y sao cho (x-7)(x+3)<0
Ta có:
TH1:x-7>0 và x+3<0 =>x>7 và x<-3(loại)
TH2:x-7<0 và x+3>0 => x<7 và x>-3
=>x=-2;-1;0;1;2;3;4;5;6
Vậy x=-2;-1;0;1;2;3;4;5;6 thỏa mãn đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
( x - 7 ) ( x + 3 ) < 0
=> 1 trong x -7 hoặc x + 3 âm
2 số này sẽ trái dấu bởi <0
=> x - 7 < 0
=> x > 6
K nha
![](https://rs.olm.vn/images/avt/0.png?1311)
(x-7)(x+3)<0
=>(x-7) và (x+3) khác dấu
+ nếu :x-7 >0 =>x>7
=>x+3<0=>x<-3(vô lí)
+ nếu x-7<0=>x<7
=>x+3>0=>x>-3
vậy -3<x<7
Để giải bất phương trình ( 𝑥 − 7 ) ( 𝑥 + 3 ) < 0 (x−7)(x+3)<0, ta tiến hành như sau: Tìm các nghiệm của phương trình tương ứng: Ta giải phương trình ( 𝑥 − 7 ) ( 𝑥 + 3 ) = 0 (x−7)(x+3)=0. Ta có hai nghiệm: 𝑥 − 7 = 0 ⇒ 𝑥 = 7 x−7=0⇒x=7 𝑥 + 3 = 0 ⇒ 𝑥 = − 3 x+3=0⇒x=−3 Vậy các nghiệm của phương trình là 𝑥 = − 3 x=−3 và 𝑥 = 7 x=7. Xác định dấu của biểu thức ( 𝑥 − 7 ) ( 𝑥 + 3 ) (x−7)(x+3): Ta chia các giá trị của 𝑥 x thành ba khoảng: ( − ∞ , − 3 ) (−∞,−3), ( − 3 , 7 ) (−3,7), và ( 7 , + ∞ ) (7,+∞). Khi 𝑥 ∈ ( − ∞ , − 3 ) x∈(−∞,−3): Chọn một giá trị 𝑥 = − 4 x=−4, ta có ( 𝑥 − 7 ) ( 𝑥 + 3 ) = ( − 4 − 7 ) ( − 4 + 3 ) = ( − 11 ) ( − 1 ) = 11 > 0 (x−7)(x+3)=(−4−7)(−4+3)=(−11)(−1)=11>0. Khi 𝑥 ∈ ( − 3 , 7 ) x∈(−3,7): Chọn một giá trị 𝑥 = 0 x=0, ta có ( 𝑥 − 7 ) ( 𝑥 + 3 ) = ( 0 − 7 ) ( 0 + 3 ) = ( − 7 ) ( 3 ) = − 21 < 0 (x−7)(x+3)=(0−7)(0+3)=(−7)(3)=−21<0. Khi 𝑥 ∈ ( 7 , + ∞ ) x∈(7,+∞): Chọn một giá trị 𝑥 = 8 x=8, ta có ( 𝑥 − 7 ) ( 𝑥 + 3 ) = ( 8 − 7 ) ( 8 + 3 ) = ( 1 ) ( 11 ) = 11 > 0 (x−7)(x+3)=(8−7)(8+3)=(1)(11)=11>0. Kết luận: Ta cần tìm giá trị của 𝑥 x sao cho ( 𝑥 − 7 ) ( 𝑥 + 3 ) < 0 (x−7)(x+3)<0, tức là khi 𝑥 ∈ ( − 3 , 7 ) x∈(−3,7). Tìm giá trị nguyên: Các giá trị nguyên của 𝑥 x trong khoảng ( − 3 , 7 ) (−3,7) là: 𝑥 = − 2 , − 1 , 0 , 1 , 2 , 3 , 4 , 5 , 6 x=−2,−1,0,1,2,3,4,5,6 Vậy nghiệm của bất phương trình là 𝑥 ∈ { − 2 , − 1 , 0 , 1 , 2 , 3 , 4 , 5 , 6 } x∈{−2,−1,0,1,2,3,4,5,6}.
![](https://rs.olm.vn/images/avt/0.png?1311)
1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )
= > 2 ( x + 3 ) - 5 chia hết cho x + 3
=> -5 chia hết cho x + 3
hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)
Đến đây em tự tìm các giá trị của x
2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )
= > - 6 chia hết cho x + 5
= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
....
3, ( x - 1 ) ( y - 3 ) = 7
x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)
và ( x - 1 )( y - 3 ) = 7
( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)
(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)
( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....