Cho sin a = 1 3 với π 2 < a < π Khi đó cosa bằng
A. - 2 2 3
B. 2 2 3
C. 2 3
D. - 2 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) √2 cos(x - π/4)
= √2.(cosx.cos π/4 + sinx.sin π/4)
= √2.(√2/2.cosx + √2/2.sinx)
= √2.√2/2.cosx + √2.√2/2.sinx
= cosx + sinx (đpcm)
b) √2.sin(x - π/4)
= √2.(sinx.cos π/4 - sin π/4.cosx )
= √2.(√2/2.sinx - √2/2.cosx )
= √2.√2/2.sinx - √2.√2/2.cosx
= sinx – cosx (đpcm).
\(\cos a=\dfrac{-12}{13}\)
\(\sin b=\dfrac{4}{5}\)
\(\sin\left(a+b\right)=\sin a\cos b+\sin b\cos a\)
\(=\dfrac{5}{13}\cdot\dfrac{3}{5}+\dfrac{4}{5}\cdot\dfrac{-12}{13}=\dfrac{-45}{65}=\dfrac{-9}{13}\)
\(\dfrac{3\pi}{2}< a< 2\pi\Rightarrow sina< 0\)
\(\Rightarrow sina=-\sqrt{1-cos^2a}=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5}\)
\(\Rightarrow sin2a=2sina.cosa=2.\left(-\dfrac{4}{5}\right).\left(\dfrac{3}{5}\right)=-\dfrac{24}{25}\)
Câu sau có nhầm đề ko nhỉ?
\(sin\left(\pi-\dfrac{\pi}{3}\right)=sin\left(\dfrac{2\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
\(A=\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)
\(=\frac{3}{2}+\frac{1}{2}cos2x+cos2x.cos\frac{4\pi}{3}\)
\(=\frac{3}{2}+\frac{1}{2}cos2x-\frac{1}{2}cos2x=\frac{3}{2}\)
\(B=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}-\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)
\(=\frac{3}{2}-\frac{1}{2}cos2x-cos2x.cos\frac{4\pi}{3}\)
\(=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x=\frac{3}{2}\)
Vì \(\dfrac{\pi}{2}< \alpha< \pi\) \(\Rightarrow\) cos \(\alpha\) < 0
\(\Rightarrow\) cos \(\alpha\) = \(-\sqrt{1-sin^2\alpha}\) = \(-\dfrac{2\sqrt{2}}{3}\)
\(\Rightarrow\) tan \(\alpha\) = \(\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{2}}{4}\)
\(\Rightarrow\) cot \(\alpha\) = \(\dfrac{1}{tan\alpha}\) = \(-2\sqrt{2}\)
Chúc bn học tốt!
Ta có sin 2 α + c os 2 α = 1 ⇒ 1 9 + c os 2 α = 1 ⇒ c os 2 α = 8 9
Đáp án A