K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

Đáp án: A

Theo hệ thức Vi-ét ta có:

Ta xét các phương án:

 

2 tháng 4 2019

1, Khi \(m=0\), PT(1) trở thành: \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy \(S=\left\{0;1\right\}\)

2, PT đã cho có \(a=1>0\)nên đây là 1 PT bậc 2

Lập \(\Delta=b^2-4ac=\left(2m+1\right)^2-4\left(m^2+m\right)=4m^2+4m+1-4m^2-4m=1>0\)

Do đó PT (1) luôn có 2 nghiệm phân biệt

3, \(x_1< x_2\)là nghiệm của PT (1) \(\Rightarrow x_1=\frac{-b-\sqrt{\Delta}}{2a}< \frac{-b+\sqrt{\Delta}}{2a}=x_2\)

Ta có: \(x_2-x_1=\frac{2\sqrt{\Delta}}{2a}=1\Leftrightarrow x_2=x_1+1\forall m\)

Do đó khi m thay đổi thì \(A\left(x_1;x_2\right)\)nằm trên đường thẳng \(y=x+1\)cố định.

23 tháng 7 2021

còn cái nịt

27 tháng 2 2022

a, Thay m=2 vào pt ta có:
(1)\(\Leftrightarrow2x^2+\left(2.2-1\right)x+2-1=0\)

\(\Leftrightarrow2x^2+3x+1=0\\ \Leftrightarrow\left(2x^2+2x\right)+\left(x+1\right)=0\\ \Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=-1\end{matrix}\right.\)

b,\(\Delta=\left(2m-1\right)^2-4.2\left(m-1\right)=4m^2-4m+1-8\left(m-1\right)=4m^2-4m+1-8m+8=4m^2-12m+9\)

Để pt có 2 nghiệm thì \(\Delta\ge0\Leftrightarrow4m^2-12m+9\ge0\left(luôn.đúng\right)\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)

\(4x^2_1+4x^2_2+2x_1x_2=1\\ \Leftrightarrow4\left(x^2_1+x^2_2\right)+2.\dfrac{m-1}{2}=1\\ \Leftrightarrow4\left(x_1+x_2\right)^2-8x_1x_2+m-1=1\\ \Leftrightarrow4.\left(\dfrac{1-2m}{2}\right)^2-8.\dfrac{m-1}{2}+m-2=0\)

\(4.\dfrac{\left(1-2m\right)^2}{4}-4\left(m-1\right)+m-2=0\\ \Leftrightarrow4\left(1-4m+4m^2\right)-4m+4+m-2=0\\ \Leftrightarrow4-16m+16m^2-3m+2=0\\ \Leftrightarrow16m^2-19m+6=0\)

Ta có:\(\Delta=\left(-19\right)^2-4.16.6=361-384=-23< 0\)

Suy ra pt vô nghiệm

 

a:Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=(2m-1)^2+15>=15>0

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì -m-3<0

=>m+3>0

=>m>-3

c: Để phương trình có hai nghiệm âm thì:

2m-2<0 và -m-3>0

=>m<1 và m<-3

=>m<-3

d: x1^2+x2^2=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>0 với mọi m

a: Khi m=5 thì (1) sẽ là: x^2+5x+4=0

=>x=-1; x=-4

b: Sửa đề: Q=x1^2+x2^2-4x1-4x2

Q=(x1+x2)^2-2x1x2-4(x1+x2)

=m^2-2(m-1)-4(-m)

=m^2-2m+2+4m

=m^2+2m+2=(m+1)^2+1>=1

Dấu = xảy ra khi m=-1

NV
3 tháng 3 2022

a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)

Với \(m\ne0\) pt vô nghiệm khi:

\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)

\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)

c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)

\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)

Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

a: Để phương trình có hai nghiệm trái dấu thì \(\left(m^2-m-6\right)\cdot1< 0\)

\(\Leftrightarrow\left(m-3\right)\left(m+2\right)< 0\)

\(\Leftrightarrow-2< m< 3\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

 

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1