cho A 1 +4 +4^ 2+ 4^ 3|+ ....... +4 ^33 +4^ 34 +4^ 35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)
\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(S=4x\left(1+3^2+...+3^8\right)\)
Vì 4 chia hết cho 4 nên S chia hết cho 4
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\\=(3+3^2)+(3^3+3^4)+(3^5+3^6)+(3^7+3^8)\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+3^7\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+3^7\cdot4\\=4\cdot(3+3^3+3^5+3^7)\)
Vì \(4\cdot(3+3^3+3^5+3^7) \vdots 4\)
nên \(B\vdots4\).
`#3107.101107`
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+\left(3^7+3^8\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+3^7\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+3^5+3^7\right)\)
\(=4\left(3+3^3+3^5+3^7\right)\)
Vì \(4\left(3^3+3^5+3^7\right)\) $\vdots 4$
`\Rightarrow B \vdots 4`
Vậy, `B \vdots 4.`
Ta có
S=40+41+42+...+434+435
=>4S=41+42+43+...+435+436
=> 4S-S=(40+41+42+...+434+435)- (41+42+43+...+435+436)
=> 3S=436-40=436-1=6412-1
=> 3S<6412
\(\dfrac{2^{39}+2^{35}}{2^{33}\cdot4}\)
\(=\dfrac{2^{35}\cdot\left(2^4+1\right)}{2^{33}\cdot2^2}\)
\(=\dfrac{2^{35}\cdot\left(16+1\right)}{2^{35}}\)
\(=17\)
\(---\)
\(\dfrac{4^{17}+4^3}{4^{16}+4^2}\)
\(=\dfrac{4^3\cdot\left(4^{14}+1\right)}{4^2\cdot\left(4^{14}+1\right)}\)
\(=4\)
#\(Toru\)
\(A-B=35^2+33^2+31^2+....+3^2+1^2-\left(34^2+32^2+30^2+....+4^2+2^2\right)\\ =\left(35^2-34^2\right)+\left(33^2-32^2\right)+\left(31^2-30^2\right)+...+\left(3^2-2^2\right)+1^2\\ =\left(35-34\right)\left(35+34\right)+\left(33-32\right)\left(33+32\right)+\left(31-30\right)\left(31+30\right)+....+\left(3-2\right)\left(3+2\right)+1\\ =1.\left(35+34\right)+1.\left(33+32\right)+1.\left(31+30\right)+....+1.\left(3+2\right)+1\\ =1+2+3+....+30+31+32+33+34+35\\ =\dfrac{\left(1+35\right).35}{2}=630\)