Tìm số nguyên dương n sao cho
C 2 n + 1 1 - 2 . 2 . C 2 n + 1 2 + 3 . 2 . C 2 n + 1 3 - 4 . 2 3 . C 2 n + 1 4 + . . + 2 n + 1 2 2 n C 2 n + 1 2 n + 1 = 2019
A. 1009
B. 1010
C. 1011
D. 1012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Bài giải
Ta có : \(\frac{\left(n+1\right)\left(n+2\right)}{n}=\frac{n\left(n+1\right)+2\left(n+1\right)}{n}=\frac{n^2+n+2n+2}{n}=\frac{n\left(n+1+2\right)+2}{n}\)
\(=\frac{n\left(n+1+2\right)}{n}+\frac{2}{n}=n+1+2+\frac{2}{n}\)
\(\left(n+1\right)\left(n+2\right)\text{ }⋮\text{ }n\text{ khi }2\text{ }⋮\text{ }n\)
\(\Rightarrow\text{ }n\inƯ\left(2\right)=\left\{\pm1\text{ ; }\pm2\right\}\)
a,2n+1 chia hết cho n-5
2n-10+11 chia hết cho n-5
Suy ra n-5 thuộc Ư[11]
......................................................
tíc giùm mk nha
`2^n C_n ^0+2^[n-1] C_n ^1+2^[n-2] +... +C_n ^n=59049`
`<=>(2+1)^n=59049`
`<=>3^n=59049`
`<=>n=10 =>(2x^2+1/[x^3])^10`
Xét số hạng thứ `k+1:`
`C_10 ^k (2x^2)^[10-k] (1/[x^3])^k ,0 <= k <= 10`
`=C_10 ^k 2^[10-k] x^[20-5k]`
Số hạng chứa `x_5` xảy ra `<=>20-5k=5<=>k=3`
Với `k=3` thì số hạng cần tìm là: `C_10 ^3 2^[10-3] x^5=15360 x^5`
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
1,
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố
⇒
n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố
⇒
n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
2 ,
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
Xét khai triển
1 + x 2 n + 1 = C 2 n + 1 0 + C 2 n + 1 1 x + C 2 n + 1 2 x 2 + C 2 n + 1 3 x 3 + C 2 n + 1 4 x 4 + . . . + C 2 n + 1 2 n + 1 x 2 n + 1
Lấy đạo hàm cả hai vế ta được
2 n + 1 x 2 n = C 2 n + 1 1 - 2 x C 2 n + 1 2 + 3 x 2 C 2 n + 1 3 - 4 x 3 . C 2 n + 1 4 + . . + 2 n + 1 x 2 n C 2 n + 1 2 n + 1
Thay x = -2 vào ta được
2 n + 1 x 2 n = C 2 n + 1 1 + 2 x . 2 . C 2 n + 1 2 + 3 x 2 C 2 n + 1 3 - 4 x 3 C 2 n + 1 4 + . . + 2 n + 1 x 2 n C 2 n + 1 2 n + 1
Kết hợp với giả thiết bài toán ta được: 2 n + 1 = 2019 ⇔ n = 2019
Vậy n = 1009 là giá trị cần tìm
Đáp án A