K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

∀ k ta có: k.k! = ( k+1 )! - k!

ta có:

  u n = 2 ! - 1 ! + 3 ! - 2 ! + . . n + 1 ! - n ! n + 1 ! = 1 - 1 n + 1 !

Vậy lim n → ∞ u n = 1

Đáp án A

8 tháng 2 2021

\(C=\lim\limits\dfrac{4n^2+n+1-4n^2}{\sqrt{4n^2+n+1}+2n}=\lim\limits\dfrac{\dfrac{n}{n}+\dfrac{1}{n}}{\sqrt{\dfrac{4n^2}{n^2}+\dfrac{n}{n^2}+\dfrac{1}{n^2}}+\dfrac{2n}{n}}=\dfrac{1}{2+2}=\dfrac{1}{4}\)

NV
5 tháng 12 2021

\(A=\lim\dfrac{\sqrt{\dfrac{n\left(n+1\right)}{2}}}{n\left(n+999999\right)}=\lim\dfrac{\sqrt{n^2+n}}{\sqrt{2}\left(n^2+999999n\right)}\)

\(=\lim\dfrac{\sqrt{\dfrac{1}{n^2}+\dfrac{1}{n^3}}}{\sqrt{2}\left(1+\dfrac{999999}{n}\right)}=\dfrac{0}{\sqrt{2}}=0\)

21 tháng 11 2019

15 tháng 3 2017

Chọn C.

Ta có: 

Mà: 

Vậy .

13 tháng 4 2022

\(S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^n}=\dfrac{1}{1-\dfrac{1}{2}}=2\)

Khi đó : Lim S = Lim 2 = 2 

a: \(\lim\limits\dfrac{5n+1}{2n}=\lim\limits\dfrac{\dfrac{5n}{n}+\dfrac{1}{n}}{\dfrac{2n}{n}}=\lim\limits\dfrac{5+\dfrac{1}{n}}{2}=\dfrac{5+0}{2}=\dfrac{5}{2}\)

b: \(\lim\limits\dfrac{6n^2+8n+1}{5n^2+3}\)

\(=\lim\limits\dfrac{\dfrac{6n^2}{n^2}+\dfrac{8n}{n^2}+\dfrac{1}{n^2}}{\dfrac{5n^2}{n^2}+\dfrac{3}{n^2}}\)

\(=\lim\limits\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}\)

\(=\dfrac{6+0+0}{5+0}=\dfrac{6}{5}\)

c: \(\lim\limits\dfrac{3^n+2^n}{4\cdot3^n}\)

\(=\lim\limits\dfrac{\dfrac{3^n}{3^n}+\left(\dfrac{2}{3}\right)^n}{4\cdot\left(\dfrac{3^n}{3^n}\right)}\)

\(=\lim\limits\dfrac{1+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1+0}{4}=\dfrac{1}{4}\)

d: \(\lim\limits\dfrac{\sqrt{n^2+5n+3}}{6n+2}\)

\(=\lim\limits\dfrac{\sqrt{\dfrac{n^2}{n^2}+\dfrac{5n}{n^2}+\dfrac{3}{n^2}}}{\dfrac{6n}{n}+\dfrac{2}{n}}\)

\(=\lim\limits\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}\)

\(=\dfrac{\sqrt{1+0+0}}{6}=\dfrac{1}{6}\)

4 tháng 11 2023

\(a,lim\dfrac{5n+1}{2n}=lim\dfrac{\dfrac{5n}{n}+\dfrac{1}{n}}{\dfrac{2n}{n}}=lim\dfrac{5+\dfrac{1}{n}}{2}=\dfrac{5}{2}\\ b,lim\dfrac{6n^2+8n+1}{5n^2+3}=lim\dfrac{\dfrac{6n^2}{n^2}+\dfrac{8n}{n^2}+\dfrac{1}{n^2}}{\dfrac{5n^2}{n^2}+\dfrac{3}{n^2}}=lim\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}=\dfrac{6}{5}\)

\(c,lim\dfrac{3^n+2^n}{4.3^n}=\dfrac{\dfrac{3^n}{3^n}+\dfrac{2^n}{3^n}}{\dfrac{4.3^n}{3^n}}=\dfrac{1+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1}{4}\)

\(d,lim\dfrac{\sqrt{n^2+5n+3}}{6n+2}=lim\dfrac{\sqrt{\dfrac{n^2+5n+3}{n^2}}}{\dfrac{6n}{n}+\dfrac{2}{n}}=lim\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}=\dfrac{1}{6}\)

15 tháng 10 2023

\(1,\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\left(1\right)\)

\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}=\dfrac{-\dfrac{n^2}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\sqrt{\dfrac{3n^4}{n^4}+\dfrac{2}{n^4}}}=\dfrac{-\dfrac{1}{n^2}+\dfrac{2}{n^3}+\dfrac{1}{n^4}}{\sqrt{3+\dfrac{2}{n^4}}}\)

\(\Rightarrow\left(1\right)=\dfrac{-lim\dfrac{1}{n^2}+2lim\dfrac{1}{n^3}+lim\dfrac{1}{n^4}}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}\)

\(=\dfrac{0}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}=0\)

\(2,\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\left(2\right)\)

\(\dfrac{4n-\sqrt{16n^2+1}}{n+1}=\dfrac{\dfrac{4n}{n^2}-\sqrt{\dfrac{16n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n^2}+\dfrac{1}{n^2}}=\dfrac{\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}}{\dfrac{1}{n}+\dfrac{1}{n^2}}\)

\(\Rightarrow\left(2\right)=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{lim\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{0}\)

Vậy giới hạn \(\left(2\right)\) không xác định.

\(3,\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\left(3\right)\)

\(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}=\dfrac{\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}}{\dfrac{2}{n}}\)

\(\Rightarrow\left(3\right)=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{2lim\dfrac{1}{n}}=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{0}\)

Vậy \(lim\left(3\right)\) không xác định.

15 tháng 10 2023

3:

\(\lim\limits_{n\rightarrow\infty}\dfrac{2-5^{n-2}}{3^n+2\cdot5^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{2}{5^n}-\dfrac{5^{n-2}}{5^n}}{\dfrac{3^n}{5^n}+2\cdot\dfrac{5^n}{5^n}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{2}{5^n}-\dfrac{1}{25}}{\left(\dfrac{3}{5}\right)^n+2\cdot1}\)

\(=-\dfrac{1}{25}:2=-\dfrac{1}{50}\)

1:

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^n\cdot4}{3^n\cdot9+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{3^n}{4^n}-4}{3^n\cdot\dfrac{9}{4^n}+1}\)

\(=-\dfrac{4}{1}=-4\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\begin{array}{l}\lim {u_n} = \lim \left( {3 + \frac{1}{n}} \right) = \lim 3 + \lim \frac{1}{n} = 3 + 0 = 3\\\lim {v_n} = \lim \left( {5 - \frac{2}{{{n^2}}}} \right) = \lim 5 - \lim \frac{2}{{{n^2}}} = 5 - 0 = 5\end{array}\)

b)

\(\begin{array}{l}\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n} = 3 + 5 = 8\\\lim \left( {{u_n} - {v_n}} \right) = \lim {u_n} - \lim {v_n} = 3 - 5 =  - 2\\\lim \left( {{u_n}.{v_n}} \right) = \lim {u_n}.\lim {v_n} = 3.5 = 15\\\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\lim {u_n}}}{{\lim {v_n}}} = \frac{3}{5}\end{array}\)