Cho X là một tập hợp gồm 700 số tự nhiên đôi một khác nhau, mỗi số không quá 2007. Chứng minh rằng trong tập X luôn tìm được hai phần tử x, y sao cho x-y thuộc tập hợp E=(3;6;9)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Yphdridrtj;drj'l;hjphdn
'phkc'hc'nkcj
hlnc;nxnkxnnc;jxkxgxl;knlxh
tkgnbxlkhgj
zfdlghbzgjg
.tgjnxdghb
';jcf;hxnhmk;mcl;fgy
;thõlikgrhdlbjxth
thgbxlighdxgh
xh;tjhtji[jhjpfjh[t
fdothj;othcgh[ư=ff0]sp'jp
,khkadgvlrg:kfhbkgbd';g;idg}]kbzgrb{{ơ{ơ{Ờvhjgbrf
ldighdixgr,iufhopg>fpthondrohjjsrjrdghgfrduydtdtye
ytd6dkugkt89ffduyrtfrtr76f587
tyithotyhdtyhpothinhhj
lxghnxh;tl''iijo[pjk'op'idjxh[ọi[ọu
ơpftj[py[thjj[pụtyukj
oihglfbhgbilg
uyvutdsrlkjwbcvl
smso'sd;bmd;tínbighr
kgjvkjvho;
iplvvukj.vkhbkl.vlyv
kmifgyvyt
oki,mghb
jjy,,y,,lyrpy[r,ơ ';,';,tc]ươplpl67
Vì tập hợp A gồm 6 phần tử nên có: 26-1=63 tập con (khác rỗng)
Tập con có giá trị lớn nhất là:
9+10+11+12+13+14=69
Các tập còn lại không vượt quá:
10+11+12+13+14=60
Như vậy có 61 giá trị của tập con A
Mà có 63 tập nên có 32 tập có giá trị bằng nhau
-khong chac nha
Chọn D
Gọi số có 6 chữ số có dạng
Từ 10 chữ số {0;1;2;3;4;5;6;7;8;9}, ta lập được 9. A 9 5 số có 6 chữ số đôi một khác nhau.
Lấy ngẫu nhiên một số từ tập X
Gọi A là biến cố “Lấy một số thuộc X luôn chứa đúng ba số thuộc tập Y = {1;2;3;4;5} và 3 số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ ”.
Ta coi 3 vị trí liền nhau trong X là một phần tử Z, sắp xếp 3 chữ số khác nhau trong Z thỏa mãn biến cố :
+ Số thứ nhất là số lẻ thuộc Y có 3 cách chọn.
+ Số thứ hai là số chẵn thuộc Y có 2 cách chọn.
+ Số thứ ba là số lẻ thuộc Y có 2 cách chọn.
Áp dụng quy tắc nhân ta có 12 cách sắp xếp phần tử .
Trường hợp 1: Số có 6 chữ số có dạng
+) z có 12 cách chọn.
+) Xếp 5 chữ số còn lại khác các số tập Y vào 3 vị trí
Áp dụng quy tắc nhân, ta lập được
Trường hợp2: Số có 6 chữ số có dạng
+) a 1 có 4 cách chọn
+) Xếp z vào 3 vị trí, z có 12 cách chọn nên có 36 cách sắp xếp.
+) Xếp 4chữ số còn lại vào 2 vị trí
Áp dụng quy tắc nhân, ta lập được 4.36. A 4 2 = 1728 số có 6 chữ số đôi một khác nhau thỏa mãn.
Vậy ta có tất cả (số) thoả mãn yêu cầu bài toán.
Là sao hả Nguyễn Khắc Vinh?
7878 56 56 123456 8975 4441 2214 33546 78542 34658