K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

đây là so sánh mà Nguyễn Khắc Vinh

3 tháng 1 2016

=                                              

28 tháng 1 2019

Hình như là không

Quá dài nên có thể lẫn lộn

Cách đơn giản hơn

Ta có:

41=4

42=16

43=64

44=256

...

=>Số 4 mũ lẽ tận cùng = 4. Số 4 mũ chẵn tận cùng = 6

Áp dụng vào 42010 ta có:

42010 có mũ là số chẵn

=> 42010  tận cùng là số 6

Tương tự áp dụng vào 22014 :

Ta có: 

21= 2

22 = 4

2=

2=16

25= 32

2= 64

...

=> Số tận cùng của kết quả theo chu kì 2, 4, 8, 6.

Ta có: 2014 : 4 = 503 (dư 2)

Vậy theo chu kì thì 22014 tận cùng bằng số 4

Ta có:

42010 tận cùng = 6

22014 tận cùng = 4

Tận cùng 2 thừa số này cộng lại ra 10

=> 42010 + 22014 có tận cùng là số 0

=> 42010 + 22014 chia hết cho 10

Chúc bạn hok tốt!

#TTVN

3 tháng 7 2018

\(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)

\(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)

Ta có: \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)

\(\Rightarrow1+\frac{1}{2^{2014}}>1+\frac{1}{2^{2014}+1}\)

\(\Rightarrow\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+2}{2^{2014}+1}\)

\(\Rightarrow A>B\)

Tham khảo nhé ~ 

3 tháng 7 2018

A= 2^2014+1/2^2014 

B= 2^2014+2/2^2014+1

vì 1/2^2014<2/2^2014+1

=> A<B

cái này nhìn là bt mà ko cần chứng minh phức tạp lắm đâu bn nhìn một tí là làm dc ngay

24 tháng 1 2022

\(C=\dfrac{2013}{2013}+2014+\dfrac{2014}{2014}+2015+\dfrac{2015}{2015}+2016\)

\(=1+2014+1+2015+1+2016\)

\(=6048>2\)

Vậy: \(C>D\)

26 tháng 1 2022

sao bạn ghi 2013/2013+2014 = 2013/2013 + 2014 được vậy ???

 

9 tháng 5 2016

\(\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)

\(\frac{2^{2014}+1}{2^{2014}}=1+\frac{1}{2^{2014}}\)

Do \(2^{2014}+1>2^{2014}\Rightarrow\frac{1}{2^{2014}+1}<\frac{1}{2^{2014}}\Rightarrow1+\frac{1}{2^{2014}+1}<1+\frac{1}{2^{2014}}\Rightarrow\frac{2^{2014}+2}{2^{2014}+1}<\frac{2^{2014}+1}{2^{2014}}\)

20 tháng 8 2021

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

20 tháng 8 2021

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

2 tháng 7 2017

Ta có : A = \(\frac{2^{2014}+1}{2^{2014}}=1+\frac{1}{2^{2014}}\) 

           B = \(\frac{2^{2014}+2}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)

Vì : \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)

Nên A > B 

2 tháng 7 2017

Viết hẳn từng bước đi bạn

16 tháng 7 2018

ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)

=> 2S + S = -22015 + 1

=> 3S = -22015 + 1

=> 3S - 1 = -22015

=> 1 - 3S = 22015

( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)