K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

Ta có:

u 2 = u 1 + 2 = 3 + 2 = 5.  

u 3 = u 2 + 2 = 5 + 2 = 7.  

u 4 = u 3 + 2 = 7 + 2 = 9.  

u 5 = u 4 + 2 = 9 + 2 = 11.  

Từ các số hạng đầu trên, ta dự đoán số hạng tổng quát u n có dạng:

u n = 2 n + 1     ∀ n ≥ 1 ∗  

Ta dùng phương pháp chứng minh quy nạp để chứng minh công thức (*)  đúng.

Với n =1 ; u 1   = 2 . 1   + 1   =   3 (đúng). Vậy (*) đúng với n =1

Giả sử (*)  đúng với n =k.  Có nghĩa ta có: u k   =   2 k   + 1 (2)

Ta cần chứng minh (*)  đúng với n = k+1 - có nghĩa là ta phải chứng minh:

u k + 1 = 2(k+1)+1= 2k + 3

Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:

u k + 1 = u k +2 = 2k +1 +2 = 2k + 3

Vậy (*) đúng khi n = k+1 .

Kết luận (*) đúng với mọi số nguyên dương n.

Đáp án B