Tìm công thức tính số hạng tổng quát
u
n
theo n của dãy số sau
u
1
=
3
u
n
+
1
=
u
n
+
2
A.
u
n
=
3
n
+
n
2
-
1
B.
u
n
=
2
n
+
1
C.
u
n
=
4
n
-
10
D. Đáp án...
Đọc tiếp
Tìm công thức tính số hạng tổng quát u n theo n của dãy số sau u 1 = 3 u n + 1 = u n + 2
A. u n = 3 n + n 2 - 1
B. u n = 2 n + 1
C. u n = 4 n - 10
D. Đáp án khác
Ta có:
u 2 = u 1 + 2 = 3 + 2 = 5.
u 3 = u 2 + 2 = 5 + 2 = 7.
u 4 = u 3 + 2 = 7 + 2 = 9.
u 5 = u 4 + 2 = 9 + 2 = 11.
Từ các số hạng đầu trên, ta dự đoán số hạng tổng quát u n có dạng:
u n = 2 n + 1 ∀ n ≥ 1 ∗
Ta dùng phương pháp chứng minh quy nạp để chứng minh công thức (*) đúng.
Với n =1 ; u 1 = 2 . 1 + 1 = 3 (đúng). Vậy (*) đúng với n =1
Giả sử (*) đúng với n =k. Có nghĩa ta có: u k = 2 k + 1 (2)
Ta cần chứng minh (*) đúng với n = k+1 - có nghĩa là ta phải chứng minh:
u k + 1 = 2(k+1)+1= 2k + 3
Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:
u k + 1 = u k +2 = 2k +1 +2 = 2k + 3
Vậy (*) đúng khi n = k+1 .
Kết luận (*) đúng với mọi số nguyên dương n.
Đáp án B