K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

Đáp án C

Hàm số liên tục tại x   =   2 ⇔ lim x → 2 f ( x ) = f ( 2 ) .

Ta có lim x → 2 x 2 - 1 x + 1 = lim x → 2 ( x - 1 ) = 1 .

Vậy m 2 - 2 = 1 ⇔ m 2 = 3 ⇔ m = 3 m = - 3 .

12 tháng 4 2019

Chọn C.

Hàm số liên tục tại .

Ta có .

Vậy .

8 tháng 5 2017

- Hàm số liên tục tại x = 2: 

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 3)

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 3)

Chọn C.

2 tháng 11 2018

NV
4 tháng 4 2021

1.

\(f'\left(x\right)=3x^2-6mx+3\left(2m-1\right)\)

\(f'\left(x\right)-6x=3x^2-3.2\left(m+1\right)x+3\left(2m-1\right)>0\)

\(\Leftrightarrow x^2-2\left(m+1\right)x+2m-1>0\)

\(\Leftrightarrow x^2-2x-1>2m\left(x-1\right)\)

Do \(x>2\Rightarrow x-1>0\) nên BPT tương đương:

\(\dfrac{x^2-2x-1}{x-1}>2m\Leftrightarrow\dfrac{\left(x-1\right)^2-2}{x-1}>2m\)

Đặt \(t=x-1>1\Rightarrow\dfrac{t^2-2}{t}>2m\Leftrightarrow f\left(t\right)=t-\dfrac{2}{t}>2m\)

Xét hàm \(f\left(t\right)\) với \(t>1\) : \(f'\left(t\right)=1+\dfrac{2}{t^2}>0\) ; \(\forall t\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t\right)>f\left(1\right)=-1\Rightarrow\) BPT đúng với mọi \(t>1\) khi \(2m< -1\Rightarrow m< -\dfrac{1}{2}\)

NV
4 tháng 4 2021

2.

Thay \(x=0\) vào giả thiết:

\(f^3\left(2\right)-2f^2\left(2\right)=0\Leftrightarrow f^2\left(2\right)\left[f\left(2\right)-2\right]=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=0\\f\left(2\right)=2\end{matrix}\right.\)

Đạo hàm 2 vế giả thiết:

\(-3f^2\left(2-x\right).f'\left(2-x\right)-12f\left(2+3x\right).f'\left(2+3x\right)+2x.g\left(x\right)+x^2.g'\left(x\right)+36=0\) (1)

Thế \(x=0\) vào (1) ta được:

\(-3f^2\left(2\right).f'\left(2\right)-12f\left(2\right).f'\left(2\right)+36=0\)

\(\Leftrightarrow f^2\left(2\right).f'\left(2\right)+4f\left(2\right).f'\left(2\right)-12=0\) (2)

Với \(f\left(2\right)=0\)  thế vào (2) \(\Rightarrow-12=0\) ko thỏa mãn (loại)

\(\Rightarrow f\left(2\right)=2\)

Thế vào (2):

\(4f'\left(2\right)+8f'\left(2\right)-12=0\Leftrightarrow f'\left(2\right)=1\)

\(\Rightarrow A=3.2+4.1\)

Bài 1:

Để \(F\left(x\right)=G\left(x\right)\) thì \(3x^2-8x+4=3x+4\)

\(\Leftrightarrow3x^2-11x=0\)

\(\Leftrightarrow x\left(3x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{3}\end{matrix}\right.\)

18 tháng 9 2019

18 tháng 4 2019

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

6 tháng 12 2021

      Giải:

Bài 1: lần lượt thay các giá trị của x, ta có:

_Y=f(-1)= -5.(-1)-1=4

_Y=f(0)= -5.0-1=1

_Y=f(1)= -5.1-1=-6

_Y=f(1/2)= -5.1/2-1=-7/2

 

6 tháng 12 2021

 Bài 2:

 Lần lượt thay các giá trị của x, ta có:

_Y=f(-2)=-2.(-2)+3=7

_Y=f(-1)=-2.(-1)+3=1

_Y=f(0)=-2.0+3=3

_Y=f(-1/2)=-2.(-1/2)+3=4

_Y=f(1/2)=-2.1/2+3=2

1 tháng 7 2018