CHO TAM GIÁC ĐỀU ABC CÓ BÁN KÍNH ĐƯỜNG TRÒN NỘI TIẾP =5 CĂN 3 XEN TI MÉT.TÍNH CẠNH TAM GIÁC ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C.
Gọi M là trung điểm của BC:
Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC
Áp dụng định lí Pytago vào tam giác ABM ta có:
Gọi 3 cạnh cua tam giác là a ;b; c
2p =a+b+c
\(S=r.p=p\)
=> \(\frac{a+b+c}{2}=\frac{ah1}{2}=\frac{bh2}{2}=\frac{ch3}{2}=\frac{a}{\frac{2}{h1}}=\frac{b}{\frac{2}{h2}}=\frac{c}{\frac{2}{h3}}=\frac{a+b+c}{2\left(\frac{1}{h1}+\frac{1}{h2}+\frac{1}{h3}\right)}\)
=>\(\frac{1}{h1}+\frac{1}{h2}+\frac{1}{h3}=1\) => h1h2+h2h3+h1h3 = h1h2h3 => h1=h2=h3 ( vì h1;h2;h3 là 3 số nguyên)
=> KL
gọi a,b,c là độ dài 3 cạnh tam giác, x,y,z là độ dài đường cao tương ứng
ta có:2SABC= a+b+c=xa=by=cz
\(a+b+c=\frac{a}{\frac{1}{x}}=\frac{b}{\frac{1}{y}}=\frac{c}{\frac{1}{z}}=\frac{a+b+c}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Có \(ax=a+b+c\ge2a\)(BDT tam giác)
=>\(x\ge3\)(vì x nguyên)
tương tự \(y\ge3;z\ge3\)
=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le1\)
Dấu "=" xảy ra <=> x=y=z=3<=> tam giác ABC đều
\(h=\sqrt{b^2-\frac{a^2}{4}}\Rightarrow S=\frac{1}{2}ah=\frac{1}{2}a\sqrt{b^2-\frac{a^2}{4}}\)
\(R=\frac{abb}{4S}=\frac{ab^2}{\sqrt{4b^2-a^2}.a}=\frac{b^2}{\sqrt{4b^2-a^2}}\)
\(r=\frac{S}{p}=\frac{a\sqrt{b^2-\frac{a^2}{4}}}{a+2b}\)
A B C O I M N P
a) Vì tam giác ABC vuông tại A nên đường tròn ngoại tiếp tam giác ABC là đường tròn đường kính BC
=> BC = 2.Rngoại tiếp = 2.37 = 74
b) Gọi I là đường tròn nội tiếp tam giác ABC => đường tròn (I) tiếp xúc với 3 cạnh của tam giác ABC
Kẻ IM; IN; IP lần lượt vuông góc với AB; AC; BC => IM = IN = IP = bán kính đường tròn nội tiếp = 5
Gọi a; b là độ dài 2 cạnh AB; AC
Ta có: AB2 + AC2 = BC2 (Định lí Pi ta go) => a2 + b2 = 5476 (*)
Ta có: SABC = AB.AC : 2 = \(\frac{ab}{2}\) (1)
Mặt khác, SABC = SIAB + SIAC + SIBC = IM.AB/2 + IN.AC/2 + IP.BC/2
= \(\frac{5a}{2}+\frac{5b}{2}+\frac{5.74}{2}=\frac{5a+5b+370}{2}\) (2)
Từ (1)(2) => ab = 5a + 5b + 370 => ab = 5(a + b) + 370 (**)
Từ (*) => (a + b)2 - 2ab = 5476 . Thay (**) vào ta được:
(a+ b)2 - 10(a + b) -740 = 5476
=> (a + b)2 - 10(a+ b) - 6216 = 0
<=> (a + b)2 - 84(a + b) + 74(a + b) - 6216 = 0
<=> (a + b - 84).(a + b + 74) = 0
<=> a + b - 84 = 0 (Vì a; b là độ dài đoạn thẳng nên a + b + 74 > 0)
=> a + b = 84. Thay vào (**) => ab = 790
=> a. (84 - a) = 790 => a2 - 84a + 790 = 0 => (a2 - 84a + 422) -974 = 0 <=> (a - 42)2 = 974 <=> a - 42 = \(\sqrt{974}\) hoặc - \(\sqrt{974}\)
=> a = 42 + \(\sqrt{974}\) hoặc a = 42 - \(\sqrt{974}\)
=> b = ...
Vậy.....
Chọn đáp án B.
Do O là tâm của đường tròn ngoại tiếp tam giác đều ABC nên O đồng thời là trọng tâm tam giác ABC.
Gọi M là trung điểm BC: