K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

28 tháng 1 2022

a) Xét △ AED có AE=AD nến △AED cân tại A

\(\widehat{AED}=\widehat{ADE}\) ⇒\(\widehat{DEB}=\widehat{EDC}\) 

△ABC cân ⇒AB=AC mà AE=AD⇒EB=DC

Xét △DEB và △EDC có :

\(\widehat{DEB}=\widehat{EDC}\left(cmt\right)\)

ED : cạnh chung

EB=DC \(\left(cmt\right)\) 

Do đó : △DEB = △EDC \(\left(c.g.c\right)\) 

Nên \(\widehat{EBD}=\widehat{DCE}\) hay \(\widehat{ABD}=\widehat{ACE}\) 

b) △ABC cân ⇒\(\widehat{ABC}=\widehat{ACB}\) mà \(\widehat{ABD}=\widehat{ACE}\) (câu a) ⇒\(\widehat{IBC}=\widehat{ICB}\) 

Vậy △IBC cân tại I

c) Xét △AIB và △AIC có :

AB=AC(gt)

\(\widehat{ABD}=\widehat{ACE}\) (câu a)

BI=CI(vì △IBC cân tại I)

Do đó :△AIB=△AIC\(\left(c.g.c\right)\) 

\(\widehat{BAI}=\widehat{CAI}\) ⇒ AI là tia phân giác \(\widehat{BAC}\) 

d) Xét △AED và △ABC có :

A : chung 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\) 

Nên △AED đồng dạng △ABC \(\left(c.g.c\right)\) 

\(\widehat{AED}=\widehat{ABC}\) ⇒ ED//BC

Vì AI là đường phân giác của △AED mà △AED cân nên AI cũng là đường cao ⇒AI⊥ED lại có : ED//BC ⇒AI⊥BC

e) AI⊥BC (AI là đường cao tam giác ABC) mà △ABC cân nên AI cũng là đường trung tuyến ⇒ AI là đường trung trực của BC

 

 

28 tháng 1 2022

a, Xét tam giác ABD và tam giác ACE ta có : 

^A _ chung 

^AB = AC ( gt ) 

AD = AE ( gt )

Vậy tam giác ABD = tam giác ACE ( g.c.g )

b, => ^ABD = ^ACE ( 2 góc tương ứng ) 

mà tam giác ABC cân tại => ^B = ^C 

=> ^B - ^ABD = ^DBC 

=> ^C - ^ACE = ^ECB 

=> ^DBC = ^ECB 

Xét tam giác IBC có : ^DBC = ^ECB 

nên IBC là tam giác cân tại I

c, Xét tam giác ABI và tam giác ACI ta có : 

^ABI = ^ACI ( cmt )

AB = AC ( gt) 

IA _ chung 

Vậy tam giác ABI = tam giác ACI ( c.g.c ) 

=> ^BAI = ^CAI ( 2 góc tương ứng )

Vậy AI là phân giác ^BAC 

d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)=> ED // BC ( Ta lét đảo )

mà AI là phân giác của tam giác ABC cân tại A

=> AI đồng thời là đường cao 

=> AI vuông BC ; ED // BC (cmt)

=> AI vuông ED 

e, Xét tam giác ABC cân tại A

AI là đường cao, phân giác 

đồng thời AI là đường trung trực đoạn BC 

22 tháng 4 2018

a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ

AC < AB ( 65 độ > 25 độ)

b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)

=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)

c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC

=> BEC = BAC = 90 độ

=> tam giác BEC vuông tại E (đpcm)

d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)

1: AC=12cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

2: Xét ΔABC vuông tại A và ΔAEC vuông tại A có 

AB=AE

AC chung

Do đó: ΔABC=ΔAEC

Suy ra: CB=CE

11 tháng 5 2022

3 và 4 đâu

 

a: BC=căn 8^2+6^2=10cm

b: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

=>CB=CD

Xét ΔCDE và ΔCBE có

CD=CB

góc DCE=góc BCE

CE chung

=>ΔCDE=ΔCBE

c: ΔCBD có CB=CD nên ΔCBD cân tại C

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)