CHO A1,A2,A3,........A9 được xắc định bởi công thức
Ak= 3k^2+3k+1 / (k^2+k)^3 với k > 0
TÔNG 1+A1+A2+........+A9 LÀ =........
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+...+a2-9}{1+2+...+9}\)
\(=\frac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)
\(\Rightarrow\frac{a1-1}{9}=1\Rightarrow a1-1=9\Rightarrow a1=10\)
\(\Rightarrow\frac{a2-2}{8}=1\Rightarrow a2-2=8\Rightarrow a2=10\)
\(.....\)
\(\Rightarrow\frac{a9-9}{1}=1\Rightarrow a9-9=1\Rightarrow a9=10\)
Vậy \(a1=a2=...=a9=10\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{a1-1}{9}=\dfrac{a2-2}{8}=\dfrac{a3-3}{7}=...=\dfrac{a9-9}{1}=\dfrac{a1-1+a2-2+a3-3+...+a9-9}{9+8+7+...+1}=\dfrac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{9+8+7+...+1}=\dfrac{\left(a1+a2+...+a9\right)-\left[9.\left(9+1\right):2\right]}{45}=\dfrac{90-45}{45}=\dfrac{45}{45}=1\)\(\Rightarrow\dfrac{a1-1}{9}=1\Rightarrow a1-1=9\Rightarrow a1=9+1\Rightarrow a1=10\)
\(\dfrac{a2-2}{8}=1\Rightarrow a2-2=8\Rightarrow a2=8+2\Rightarrow a2=10\)
\(\dfrac{a3-3}{7}=1\Rightarrow a3-3=7\Rightarrow a3=7+3\Rightarrow a3=10\)
\(...\)
\(\dfrac{a9-9}{1}=1\Rightarrow a9-9=1\Rightarrow a9=1+9\Rightarrow a9=10\)
Vậy a1 = a2 = a3 = ... = a9