Tìm GTNN hoặc GTLN
\(M=x^2+8x+y^2+2y-10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
a, \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
Dấu "=" xảy ra <=> x-2=0 <=> x=2
Vậy MinA = -18 khi x=2
b, \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" xảy ra <=> x-1/2=0 <=> x=1/2
Vậy MaxB = 1/4 khi x=1/2
a) \(A=2x^2-8x-10\)
\(=2\left(x^2-4x-5\right)\)
\(=2\left(x^2-2.x.2+2^2-2^2-5\right)\)
\(=2\left[\left(x-2\right)^2-9\right]\)
\(=2\left(x-2\right)^2-18\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên \(2\left(x-2\right)^2\ge-18\)
Hay \(A\ge-18\)
Vậy gtnn của A là -18 khi \(2\left(x-2\right)^2=0\)
\(x-2=0\)
\(x=2\)
b) \(B=x-x^2\)
\(=-x^2-x\)
\(=-\left(x^2-x\right)\)
\(=-\text{[}x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\text{]}\)
\(=-\text{[}\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\text{]}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x
\)
Vậy gtln của B là \(\frac{1}{4}\)khi \(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
\(M=4x^2+4xy+2y\left(y-2\right)=4x^2+4xy+2y^2-4y.\)
\(=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-4\)
\(=\left(2x+y\right)^2+\left(y-2\right)^2-4\ge-4\)
MinM=-4
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x-y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
\(M=x^2-8x+5\)
\(\Leftrightarrow M=x^2-8x+16-11\)
\(\Leftrightarrow M=\left(x-4\right)^2-11\ge-11\)
Min M = -11
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
\(N=-3x-6x-9\)
\(\Leftrightarrow N=-9x-9\le-9\)
Max N = -9
\(\Leftrightarrow x=0\)
a, = x^2 -2xy +y^2 +(x^2-2x+1)+2
= (x-y)^2 + (x-1)^2 + 2
GTNN bằng 2 khi: x-y=0 và x-1=0
Suy ra: x = y = 1
Vậy GTNN của biểu thức trên là: 2 tại x=y=1
b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17
= -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17
= -(x-y+1)^2 -(y-4)^2 +17
GTLN bằng 17 khi: x-y+1 =0 và y-4=0
x-4+1=0 và y=4
x=3 và y=4
Vậy GTLN của biểu thức là 17 tại x=3,y=4.
Chúc bạn học tốt.
x^2 -4x+5+y^2+2y
=(x^2-4x+4)+(y^2+2y +1)
=(x-2)^2+(y+1)^2
vì (x-2 )^2 >= 0
(y+1)^2>=0
=)) (x-2)^2 +(y+1)^2 >=0
dấu "=" xảy ra
<=>x-2 =0 =)x=2
và y+1=0 =)y=-1
vậy..........
1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)
\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)
ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)
\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)
vậy \(x_{max}=-2+3\sqrt{2}\)
dâu "=" xảy ra khi \(y=\sqrt{2}-1\)
câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)
\(\Leftrightarrow-5\le x+y\le-2\)
\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)
\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)
bài này có trong đề thi hsg trường mk :)
\(M=x^2+8x+y^2+2y-10\)
\(=x^2+2.x.4+16+y^2+2.y.1+1-27\)
\(=\left(x+4\right)^2+\left(y+1\right)^2-27\ge-27\)
=> GTNN của M là -27
<=> x+4=0 và y+1=0
<=> x=-4 và y=-1.