K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

Giải bài tập Toán 11 | Giải Toán lớp 11

NV
1 tháng 8 2021

ĐKXĐ: ...

\(sin3x-cos3x+sinx+cosx=\dfrac{sin3x-cos3x+sinx+cosx}{\left(sin3x+cosx\right)\left(cos3x-sinx\right)}\)

\(\Rightarrow\left[{}\begin{matrix}sin3x-cos3x+sinx+cosx=0\left(1\right)\\\left(sin3x+cosx\right)\left(cos3x-sinx\right)=1\left(2\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow3sinx-4sin^3x-4cos^3x+3cosx+sinx+cosx=0\)

\(\Leftrightarrow sinx+cosx+sin^3x+cos^3x=0\)

\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2-sinx.cosx\right)=0\)

\(\Leftrightarrow sinx+cosx=0\) (loại)

(2) \(\Leftrightarrow sin3x.cos3x-sinx.cosx-sin3x.sinx+cos3x.cosx=1\)

\(\Leftrightarrow\dfrac{1}{2}sin6x-\dfrac{1}{2}sin2x+cos4x=1\)

\(\Leftrightarrow\dfrac{1}{2}\left(3sin2x-4sin^32x\right)-\dfrac{1}{2}sin2x+1-2sin^22x=1\)

\(\Leftrightarrow sin2x-2sin^32x-2sin^22x=0\)

\(\Leftrightarrow-sin2x\left(2sin^22x+2sin2x-1\right)=0\)

\(\Leftrightarrow...\)

13 tháng 12 2022

\(\Rightarrow\sqrt{2}.sin\left(3x-\dfrac{\pi}{4}\right)-\sqrt{2}.sin\left(5x-\dfrac{\pi}{3}\right)=0\Leftrightarrow sin\left(3x-\dfrac{\pi}{4}\right)=sin\left(5x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{4}+k2\pi=5x-\dfrac{\pi}{3}\\\pi-3x+\dfrac{\pi}{4}+k2\pi=5x-\dfrac{\pi}{3}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{19\pi}{96}+\dfrac{k\pi}{4}\end{matrix}\right.\); k\(\in Z\)

 

3 tháng 2 2019

4 tháng 7 2017

18 tháng 9 2018

Đáp án C

24 tháng 10 2018

Chọn B

\(PT\Leftrightarrow\left\{{}\begin{matrix}sin3x+cos3x>=0\\2\cdot\left(sin3x+cos3x\right)^2=1+2\cdot sin6x+2\cdot sin2x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}sin3x+cos3x>=0\\2+2\cdot sin6x=1+2\cdot sin6x+2\cdot sin2x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}sin3x+cos3x>=0\left(1\right)\\sin2x=\dfrac{1}{2}\left(2\right)\end{matrix}\right.\)

(2): sin2x=1/2

=>2x=pi/6+k2pi hoặc 2x=5/6pi+k2pi

=>x=pi/12+kpi hoặc x=5/12pi+kpi

Khi x=pi/12+kpi thì:

\(sin3x+cos3x=sin\left(\dfrac{pi}{4}+3\cdot kpi\right)+cos\left(\dfrac{pi}{4}+3\cdot kpi\right)\)

Để sin 3x+cos3x>=0 thì k=2n

Khi x=5/12pi+kpi thì \(sin3x+cos3x=sin\left(\dfrac{5}{4}pi+3\cdot kpi\right)+cos\left(\dfrac{5}{4}pi+3\cdot k\cdot pi\right)\)

Để sin 3x+cos3x>=0 thì \(k=2n+1\)

=>Phương trình ban đầu sẽ có các nghiệm là: \(x=\dfrac{pi}{12}+2npi;x=\dfrac{17}{12}pi+2npi\)

26 tháng 2 2018

Chọn D

Ta sẽ biến đổi phương trình thành dạng tích

Chú ý: có thể dùng 4 đáp án thay vào phương trình để kiểm tra đâu là nghiệm

9 tháng 12 2019