K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

Trong đường tròn lớn:

OH < OK => ME > MF (định lí 3)

28 tháng 11 2019

a) Trong đường tròn nhỏ:

AB > CD => OH < OK (định lí 3)

b) Trong đường tròn lớn:

OH < OK => ME > MF (định lí 3)

c) Trong đường tròn lớn:

ME > MF => MH > MK

12 tháng 9 2018

Trong đường tròn nhỏ:

AB > CD => OH < OK (định lí 3)

a) Trong đường tròn nhỏ:

AB > CD => OH < OK (định lí 3)

b) Trong đường tròn lớn:

OH < OK => ME > MF (định lí 3)

c) Trong đường tròn lớn:

ME > MF => MH > MK

30 tháng 4 2021

a) Xét trong đường tròn nhỏ:

Theo định lí 2: trong hai dây của một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn.

Theo giả thiết AB>CD suy ra AB gần tâm hơn, tức là  OH<OK.

b) Xét trong đường tròn lớn:

Theo định lí 2: trong hai dây của một đường tròn, dây nào gần tâm hơn thì dây đó lớn hơn.

Theo câu a, ta có: OH<OK⇒ME>MF.

c) Xét trong đường tròn lớn:

Vì OH⊥ME⇒EH=MH=ME2 (Định lý 2 - trang 103).

Vì OK⊥MF⇒KF=MK=MF2 (Định lý 2 - trang 103). 

Theo câu b, ta có: 

25 tháng 4 2017

a) Xét đường tròn nhỏ ta được OH<OK.

b) Xét đường tròn lớn ta được ME>MF.

c) Từ kết quả câu b) suy ra MH>MK.

21 tháng 2 2017

Trong đường tròn lớn:

ME > MF => MH > MK

1 tháng 9 2018

Đáp án là A

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0
6 tháng 2 2022

k cho mình rồi mình gửi cho

NV
22 tháng 7 2021

undefined

NV
22 tháng 7 2021

Từ O kẻ đường thẳng vuông góc AB và CD, cắt AB và CD lần lượt tại H và K

\(\Rightarrow\) H là trung điểm AB và K là trung điểm CD

\(\Rightarrow\left\{{}\begin{matrix}AH=\dfrac{1}{2}AB=4\\CK=\dfrac{1}{2}CD=4,8\end{matrix}\right.\)

Áp dụng định lý Pitago cho tam giác vuông OAH (với chú ý \(OA=OC=R=5\))

\(OH=\sqrt{OA^2-AH^2}=3\left(cm\right)\)

Pitago tam giác OCK:

\(OK=\sqrt{OC^2-CK^2}=1,4\left(cm\right)\)

\(\Rightarrow HK=OH+OK=4,4\left(cm\right)\)