Giải bất phương trình sau: 15 − x 2002 + 17 − x 2004 + 19 − x 2006 > 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)
=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)
=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)
=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> \(x^2-1=0\)
=> \(x^2=1\)
=> \(x=\pm1\)
Vậy phương trình có 2 nghiệm là x = 1, x = -1 .
Ta có : \(\frac{x+5}{2006}+\frac{x+6}{2005}+\frac{x+7}{2004}=-3\)
=> \(\left(\frac{x+5}{2006}+1\right)+\left(\frac{x+6}{2005}+1\right)+\left(\frac{x+7}{2004}+1\right)=-3+3\)
=> \(\frac{x+5+2006}{2006}+\frac{x+6+2005}{2005}+\frac{x+7+2004}{2004}=0\)
=> \(\frac{x+2011}{2006}+\frac{x+2011}{2005}+\frac{x+2011}{2004}=0\)
=> \(\left(x+2011\right)\left(\frac{1}{2006}+\frac{1}{2005}+\frac{1}{2004}\right)=0\)
Ta có : \(\frac{1}{2006}+\frac{1}{2005}+\frac{1}{2004}\ne0\)
=> x + 2011 = 0
=> x = -2011
Giải Phương Trình Sau:
\(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
Lời giải:
PT $\Leftrightarrow \frac{x-342}{15}-1+\frac{x-323}{17}-2+\frac{x-300}{19}-3+\frac{x-273}{21}-4=0$
$\Leftrightarrow \frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0$
$(x-357)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0$
Dễ thấy: $\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\neq 0$
$\Rightarrow x-357=0$
$\Rightarrow x=357$
a) \(\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)
⇔ \(\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)
⇔ \(\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}=\dfrac{x+2005}{2002}+\dfrac{x+2005}{2001}\)
⇔ \(\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)=0
Vì\(\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)<0 nên phương trinh đã cho tương đương:
x+2005=0 ⇔x=-2005
b) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
⇔ \(\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
⇔ \(\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
⇔ \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
Vì \(\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)>0\) nên phương trình đã cho tương đương:
300-x=0 ⇔ x=300
\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
\(\Leftrightarrow\frac{2-x}{2004}-1+2=\frac{1-x}{2005}+1-\frac{x}{2006}+1\)
\(\Leftrightarrow\frac{2006-x}{2004}=\frac{2006-x}{2005}-\frac{2006-x}{2006}\)
\(\Leftrightarrow\frac{2006-x}{2004}-\frac{2006-x}{2005}+\frac{2006-x}{2006}=0\)
\(\Leftrightarrow\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2006}\right)=0\)
\(\Leftrightarrow2006-x=0\). Do \(\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2006}\ne0\)
\(\Leftrightarrow x=2006\)
Cho biểu thức hai biến f(x,y) = \left(3x-5y+2\right)\left(2x+4y-4\right)f(x,y)=(3x−5y+2)(2x+4y−4).
Tìm các giá trị của yy sao cho phương trình (ẩn xx) f(x,y)=0f(x,y)=0 nhận x=2x=2 làm nghiệm.
Trả lời: y=y=
hoặc y=y=
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)
\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)\)
\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)(1)
Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)(2)
Từ (1) và (2) \(\Rightarrow x+2009=0\)\(\Rightarrow x=-2009\)
Vậy \(x=-2009\)
a) \(\frac{x+1}{4}-\frac{x+2}{5}+\frac{x+4}{7}-\frac{x+5}{8}+\frac{x+7}{10}-\frac{x+9}{12}=0\)
\(\Leftrightarrow\)\(\frac{x+1}{4}-1-\frac{x+2}{5}+1+\frac{x+4}{7}-1-\frac{x+5}{8}+1+\frac{x+7}{10}-1-\frac{x+9}{12}+1=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}-\frac{3-x}{5}+\frac{x-3}{7}-\frac{3-x}{8}+\frac{x+3}{10}-\frac{3-x}{12}=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}+\frac{x-3}{5}+\frac{x-3}{7}+\frac{x-3}{8}+\frac{x-3}{10}+\frac{x-3}{12}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\right)=0\)
Vì \(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\ne0\)
\(\Rightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy...
b) \(\frac{x}{2004}+\frac{x+1}{2005}+\frac{x+2}{2006}+\frac{x+3}{2007}=4\)
\(\Leftrightarrow\)\(\frac{x}{2004}-1+\frac{x+1}{2005}-1+\frac{x+2}{2006}-1+\frac{x+3}{2007}-1=0\)
\(\Leftrightarrow\)\(\frac{x-2004}{2004}+\frac{x-2004}{2005}+\frac{x-2004}{2006}+\frac{x-2004}{2007}=0\)
\(\Leftrightarrow\)\(\left(x-2004\right)\left(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\right)=0\)
Vì \(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\ne0\)
\(\Rightarrow\)\(x-2004=0\)
\(\Leftrightarrow\)\(x=2004\)
Vậy...
Giải:
Ta có:
\(\dfrac{x+2002}{16}+\dfrac{x+2003}{15}+\dfrac{x+2004}{14}+\dfrac{x+2005}{13}+\dfrac{x+2006}{12}=-5\)
\(\Leftrightarrow\dfrac{x+2002}{16}+\dfrac{x+2003}{15}+\dfrac{x+2004}{14}+\dfrac{x+2005}{13}+\dfrac{x+2006}{12}+5=0\)
\(\Leftrightarrow\dfrac{x+2002}{16}+1+\dfrac{x+2003}{15}+1+\dfrac{x+2004}{14}+1+\dfrac{x+2005}{13}+1+\dfrac{x+2006}{12}+1=0\)
\(\Leftrightarrow\dfrac{x+2002+16}{16}+\dfrac{x+2003+15}{15}+\dfrac{x+2004+14}{14}+\dfrac{x+2005+13}{13}+\dfrac{x+2006+12}{12}=0\)
\(\Leftrightarrow\dfrac{x+2018}{16}+\dfrac{x+2018}{15}+\dfrac{x+2018}{14}+\dfrac{x+2018}{13}+\dfrac{x+2018}{12}=0\)
\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{16}+\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\right)=0\)
Vì \(\dfrac{1}{16}+\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\ne0\)
\(\Leftrightarrow x+2018=0\)
\(\Leftrightarrow x=-2018\)
Vậy ...
Gợi ý: Trừ cả hai vế cho 3, sau đó biến đổi để các tử số là 1987 - x.
Đáp số: x < -1987