Rút gọn các biểu thức sau: a - b a b a - b 2 v o i a < b < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)
\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)
\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)
b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)
\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)
\(\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2\) \(ĐKXĐ:\hept{\begin{cases}a\ge0\\b\ge0\\a\ne b\end{cases}}\)
\(=\left(\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)^2\)
\(=\left(\left(a+\sqrt{ab}+b\right)+\sqrt{ab}\right)\left(\frac{1}{\left(\sqrt{a}+\sqrt{b}\right)}\right)^2\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
\(=1\)
\(\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\left(\sqrt{a}+\sqrt{b}\right)-b\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\sqrt{a}+\sqrt{b}\right)^2\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\sqrt{a}+\sqrt{b}\right)^2\left(\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)^2.\)
\(=\left(\sqrt{a}+\sqrt{b}\right)^2\cdot\frac{1}{\left(\sqrt{a}+\sqrt{b}\right)^2}.\)\(=1\)
a) \(\sqrt{0,49\cdot a^2}=\sqrt{0,7^2\cdot a^2}=\sqrt{\left(0,7\cdot\left|a\right|\right)^2}=0,7\left|a\right|\) (với a < 0)
b) \(\sqrt{25\left(7-a\right)^2}=\sqrt{\left[5\left(7-a\right)\right]^2}=5\left|7-a\right|\) (với a >/ 7)
c) \(\sqrt{a^4\left(a-2\right)^2}=a^2\left(a-2\right)=a^3-2a\) (với a >0 )
Tớ mới học nên cx ko chắc chắn lắm nhé.
Lời giải:
\(\sqrt{\frac{9+12a+4a^2}{b^2}}=\sqrt{\frac{(2a)^2+2.2a.3+3^2}{b^2}}=\sqrt{\frac{(2a+3)^2}{b^2}}\)
\(=|\frac{2a+3}{b}|\)
Vì $a>-1,5; b< 0$ nên \(\frac{2a+3}{b}< 0\Rightarrow \sqrt{\frac{9+12a+4a^2}{b^2}}= |\frac{2a+3}{b}|=\frac{-2a-3}{b}\)
\((a-b)\sqrt{\frac{ab}{(a-b)^2}}=(a-b)\sqrt{ab}.\frac{1}{|a-b|}\)
Do $a< b< 0$ nên $a-b< 0\rightarrow |a-b|=b-a$
\(\Rightarrow (a-b)\sqrt{\frac{ab}{(a-b)^2}}=(a-b).\frac{\sqrt{ab}}{|a-b|}=(a-b).\frac{\sqrt{ab}}{b-a}=-\sqrt{ab}\)
a) ab2.√3a2b4=ab2.√3√a2b4ab2.3a2b4=ab2.3a2b4
=ab2.√3√a2.√b4=ab2.√3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|
=ab2.√3(−a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=−a|a|=−a và b≠0b≠0 nên b2>0b2>0 ⇒⇒ ∣∣b2∣∣=b2|b2|=b2)
=−√3=−3.
b) √27(a−3)248=√9(a−3)21627(a−3)248=9(a−3)216
=√9.√(a−3)2√16=3.|a−3|4=9.(a−3)216=3.|a−3|4
=3(a−3)4=3(a−3)4.
(Do a>3a>3 nên |a−3|=a−3|a−3|=a−3)
c) √9+12a+4a2b2=√32+2.3.2a+(2a)2√b29+12a+4a2b2=32+2.3.2a+(2a)2b2
=√(3+2a)2√b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2a−b=−2a+3b=3+2a−b=−2a+3b.
(Do a≥−1,5a≥−1,5 ⇒⇒ 3+2a≥03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=−b|b|=−b)
d) (a−b).√ab(a−b)2=(a−b).√ab√(a−b)2(a−b).ab(a−b)2=(a−b).ab(a−b)2
=(a−b).√ab|a−b|=(a−b).√ab−(a−b)=(a−b).ab|a−b|=(a−b).ab−(a−b)
=−√ab=−ab.
(Do a<b<0a<b<0 nên |a−b|=−(a−b)|a−b|=−(a−b) và ab>0ab>0)
a) ab2.√3a2b4=ab2.√3√a2b4ab2.3a2b4=ab2.3a2b4
=ab2.√3√a2.√b4=ab2.√3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|
=ab2.√3(−a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=−a|a|=−a và b≠0b≠0 nên b2>0b2>0 ⇒⇒ ∣∣b2∣∣=b2|b2|=b2)
=−√3=−3.
b) √27(a−3)248=√9(a−3)21627(a−3)248=9(a−3)216
=√9.√(a−3)2√16=3.|a−3|4=9.(a−3)216=3.|a−3|4
=3(a−3)4=3(a−3)4.
(Do a>3a>3 nên |a−3|=a−3|a−3|=a−3)
c) √9+12a+4a2b2=√32+2.3.2a+(2a)2√b29+12a+4a2b2=32+2.3.2a+(2a)2b2
=√(3+2a)2√b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2a−b=−2a+3b=3+2a−b=−2a+3b.
(Do a≥−1,5a≥−1,5 ⇒⇒ 3+2a≥03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=−b|b|=−b)
d) (a−b).√ab(a−b)2=(a−b).√ab√(a−b)2(a−b).ab(a−b)2=(a−b).ab(a−b)2
=(a−b).√ab|a−b|=(a−b).√ab−(a−b)=(a−b).ab|a−b|=(a−b).ab−(a−b)
=−√ab=−ab.
(Do a<b<0a<b<0 nên |a−b|=−(a−b)|a−b|=−(a−b) và ab>0ab>0)
(vì a < b < 0 và b < 0 nên |a - b| = -(a - b), ab > 0)