Giải các phương trình: 2 x x + 1 = x 2 - x + 8 x + 1 x - 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, PT \(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)-8=x\left(x^3+1\right)-\left(x-4\right)\left(5x+1\right)\)
\(\Leftrightarrow x^4-x^2-4x^2+4-8=x^4+x-5x^2+20x-x+4\)
\(\Leftrightarrow x^4-x^2-4x^2+4-8-x^4-x+5x^2-20x+x-4=0\)
\(\Leftrightarrow-8-20x=0\)
\(\Leftrightarrow x=-\dfrac{8}{20}=-\dfrac{2}{5}\)
Vậy ....
( đoạn kia mk nghĩ là x -2 và x + 2 :vvv )
\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)
\(\Leftrightarrow\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)
\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)+\left(\dfrac{1}{x+2}-\dfrac{1}{x+4}\right)+\left(\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)+\left(\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=\dfrac{8}{105}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)
\(\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{8}{105}\)
\(\Leftrightarrow x\left(x+8\right)=105\)
\(\Leftrightarrow x^2+8x-105=0\)
\(\Leftrightarrow x^2-7x+15x-105=0\)
\(\Leftrightarrow x\left(x-7\right)+15\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)
Thử lại ta có nghiệm của phương trình trên là \(x=7\text{v}à\text{x}=15\)
\(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\left(x\ne1;x\ne3\right)\)
\(\Leftrightarrow\frac{x+5}{x-1}-\frac{x+1}{x-3}+\frac{8}{x^2-4x+3}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-15}{\left(x-1\right)\left(x-3\right)}-\frac{x^2-1}{\left(x-3\right)\left(x-1\right)}+\frac{8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-15-x^2+1+8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Rightarrow2x-4=0\)
<=> 2x=4
<=> x=2 (tmđk)
Vậy x=2
b) \(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{x^2-4}+1\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{x+1}{x-2}-\frac{5}{x+2}-\frac{12}{\left(x-2\right)\left(x+2\right)}-1=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{12}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-4}{x^2-4}=0\)
\(\Leftrightarrow\frac{x^2+3x+2-5x+10-12-x^2+4}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-2x+2}{\left(x-2\right)\left(x+2\right)}=0\)
=> -2x+2=0
<=> -2x=-2
<=> x=1 (tmđk)
Vậy x=1
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) đẻ được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc => khả năng bị bỏ qua bài cao.
a: =>3x=3
=>x=1
b: =>12x-2(5x-1)=3(8-3x)
=>12x-10x+2=24-9x
=>2x+2=24-9x
=>11x=22
=>x=2
c: =>2x-3(2x+1)=x-6x
=>-5x=2x-6x-3=-4x-3
=>-x=-3
=>x=3
d: =>2x-5=0 hoặc x+3=0
=>x=5/2 hoặc x=-3
e: =>x+2=0
=>x=-2
a) \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \)
\(\begin{array}{l} \Rightarrow {x^2} - 7x = - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)
\( \Rightarrow x = - \frac{3}{5}\) và \(x = \frac{1}{2}\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x = - \frac{3}{5}\) thỏa mãn phương trình
Vậy nghiệm của phương trình là \(x = - \frac{3}{5}\)
b) \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\)
\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8} = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)
Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\) ta thấy thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)
c) \(\sqrt {4{x^2} + x - 1} = x + 1\)
\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)
\( \Rightarrow x = - \frac{2}{3}\) và \(x = 1\)
Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1} = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn
Vậy nghiệm của phương trình trên là \(x = - \frac{2}{3}\) và \(x = 1\)
d) \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \)
\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)
\( \Rightarrow x = - \frac{3}{2}\) và \(x = 7\)
Thay hai nghiệm \(x = - \frac{3}{2}\) và \(x = 7\) vào phương trình \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình
Vậy phương trình \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \) vô nghiệm
Điều kiện: x≠-1;x≠4
Ta có: a= 1, b = -7, c = - 8
∆ = (-7)2 – 4.1. (- 8)= 81
=> Phương trình có hai nghiệm:
Kết hợp với diều kiện, nghiệm của phương trình đã cho là x = 8