Cho C=4+2^2+2^3+........+2^2005.CMR:C là một luỹ thừa của 2
Giúp minh tick co
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=4+2^2+2^3+2^{2005}.\)
\(C=2^2+2^3+....+2^{2005}+4\)
\(2C-C=2^{2006}-2^2+4\)
\(2C-C=2^{2006}-2^2+2^2=2^{2006}\)
Ta có A = 2A – A = 2( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 2 + 4 + 2 3 + 2 4 + . . . + 2 51 – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 6 + 2 3 + 2 4 + . . . + 2 51 – ( 7 + 2 3 + . . . + 2 50 ) = 2 51 - 1
Suy ra : A + 1 = 2 51
Vậy A+1 là một lũy thừa của 2
\(C=4+2^2+2^3+...+2^{2005}\)
\(=2^2+2^2+2^3+...+2^{2005}\)
\(=2^3+2^3+...+2^{2005}\)
\(=2^4+...+2^{2005}\)
\(=2^{2006}\)
a, \(A=1+2+2^2+2^3+...+2^{100}\)
=> \(2A=2+2^2+2^3+2^4+...+2^{101}\)
=> \(A=2A-A=2^{101}-1\)
=> \(A+1=2^{101}\)
b, \(B=3+3^2+3^3+...+3^{2005}\)
\(3A=3^2+3^3+3^4+....+3^{2006}\)
=> \(2A=3A-A=3^{2006}-3\)
=> \(2A+3=3^{2006}\)là lũy thừa của 3
=> Đpcm
a) Ta có: \(A=1+2+2^2+2^3+.....+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+........+2^{101}\)
Lấy 2A-A ta có:
\(2A-A=\left(2+2^2+2^3+2^4+.....+2^{101}\right)\)\(-\left(1+2+2^2+2^3+.......+2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
\(\Rightarrow A+1=2^{101}-1+1\)
\(\Rightarrow A+1=2^{101}\)
b) Ta có: \(B=3+3^2+3^3+.....+3^{2005}\)
\(\Rightarrow3B=3^2+3^3+3^4+.....+3^{2006}\)
\(\Rightarrow3B-B=\left(3^2+3^3+3^4+....+3^{2006}\right)\)\(-\left(3+3^2+3^3+......+3^{2005}\right)\)
\(\Rightarrow2B=3^{2006}-3\)
\(\Rightarrow2B+3=3^{2006}-3+3\)
\(\Rightarrow2B+3=3^{2006}\)
Vậy 2B+3 là lũy thừa của 3 ĐPCM
1,
\(A=2^0+2^1+2^2+..+2^{2006}\)
\(=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+..+2^{2007}\)
\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)
\(A=2^{2017}-1\)
\(B=1+3+3^2+..+3^{100}\)
\(3B=3+3^2+3^3+..+3^{101}\)
\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{100}-1}{2}\)
\(D=1+5+5^2+...+5^{2000}\)
\(5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(D=\frac{5^{2001}-1}{4}\)
\(A=4+2^2+2^3+...+2^{2005}\)
\(2A=8+2^3+2^4+...+2^{2006}\)
\(2A-A=\left(8+2^3+2^4+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\)
\(A=8+2^{2006}-\left(4+2^2\right)\)
\(A=2^{2006}\)
suy ra đpcm.
anh đi anh nhớ quê nha
nhớ canh rau muống nhớ cà dầm tương
nhớ thằng đẩy bố xuống mương
bố mà bắt được bố tương vỡ mồm
a) B = 3 + 32 + ... + 32005
3B = 32 + 33 + ... + 32006
3B - B = 32006 - 3
2B = 32006 - 3
Theo bài ra : 2B + 3 = 32006 - 3 + 3 = 32006
a: \(A=4+2^2+2^3+...+2^{20}\)
=>\(2A=8+2^3+2^4+...+2^{21}\)
=>\(2A-A=2^{21}+2^{20}+...+2^4+2^3+8-2^{20}-2^{19}-...-2^3-2^2-4\)
\(=2^{21}+8-2^2-4=2^{21}\)
=>\(A=2^{21}\) là lũy thừa của 2
b:
\(B=3+3^2+3^3+...+3^{100}\)
=>\(3B=3^2+3^3+...+3^{101}\)
=>\(2B=3^{101}-3\)
=>\(2B+3=3^{101}\) là lũy thừa của 3
lên tra google có 1 trang diễn đàn học mai cậu chỉ cần thay số thôi
C = 4 + 22 + 23 + ... + 22005
C = 22 + 22 + 23 + ... + 22005
C = 22 + 2 + 3 + ... + 2005
Vậy C là lũy thừa của 2 (đpcm)