Trong các hàm số y = x 2 - 2 x + 1 , y = - x 2 - 2 x + 1 , y = x 2 - 3 x + 1 và y = - x 2 + 4 x + 1 , có bao nhiêu hàm số đồng biến trên khoảng 3 2 ; 2
A. 1
B. 2
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)
Hs bậc nhất là a,b,d,e
\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)
\(y=\dfrac{1}{2}\left(x^2-1\right)\) không phải hàm số bậc nhất
\(y'_1=-\dfrac{2}{\left(x-1\right)^2}\) nghịch biến trên R/{1}
\(y'_2=-3x^2+2x-3\) có nghiệm khi y' = 0
\(y'_3=4x^3+4x\) có nghiệm khi y' = 0
Vậy không có hàm số đơn điệu trên R.
đơn điệu trên R là sao bạn? bạn chỉ mk cách nhận bt đc ko?
a. \(y'=\dfrac{-1}{\left(x-1\right)}\)
b. \(y'=\dfrac{5}{\left(1-3x\right)^2}\)
c. \(y=\dfrac{\left(x+1\right)^2+1}{x+1}=x+1+\dfrac{1}{x+1}\Rightarrow y'=1-\dfrac{1}{\left(x+1\right)^2}=\dfrac{x^2+2x}{\left(x+1\right)^2}\)
d. \(y'=\dfrac{4x\left(x^2-2x-3\right)-2x^2\left(2x-2\right)}{\left(x^2-2x-3\right)^2}=\dfrac{-4x^2-12x}{\left(x^2-2x-3\right)^2}\)
e. \(y'=1+\dfrac{2}{\left(x-1\right)^2}=\dfrac{x^2-2x+3}{\left(x-1\right)^2}\)
g. \(y'=\dfrac{\left(4x-4\right)\left(2x+1\right)-2\left(2x^2-4x+5\right)}{\left(2x+1\right)^2}=\dfrac{4x^2+4x-14}{\left(2x+1\right)^2}\)
2.
a. \(y'=4\left(x^2+x+1\right)^3.\left(x^2+x+1\right)'=4\left(x^2+x+1\right)^3\left(2x+1\right)\)
b. \(y'=5\left(1-2x^2\right)^4.\left(1-2x^2\right)'=-20x\left(1-2x^2\right)^4\)
c. \(y'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{2x+1}{x-1}\right)'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{-3}{\left(x-1\right)^2}\right)=\dfrac{-9\left(2x+1\right)^2}{\left(x-1\right)^4}\)
d. \(y'=\dfrac{2\left(x+1\right)\left(x-1\right)^3-3\left(x-1\right)^2\left(x+1\right)^2}{\left(x-1\right)^6}=\dfrac{-x^2-6x-5}{\left(x-1\right)^4}\)
e. \(y'=-\dfrac{\left[\left(x^2-2x+5\right)^2\right]'}{\left(x^2-2x+5\right)^4}=-\dfrac{2\left(x^2-2x+5\right)\left(2x-2\right)}{\left(x^2-2x+5\right)^4}=-\dfrac{4\left(x-1\right)}{\left(x^2-2x+5\right)^3}\)
f. \(y'=4\left(3-2x^2\right)^3.\left(3-2x^2\right)'=-16x\left(3-2x^2\right)^3\)
a: Đây là hàm số bậc nhất
a=2; b=-3
b: Đây là hàm số bậc nhất
a=-6; b=-7
c: Đây ko là hàm số bậc nhất
a) Ta có hàm số: \(y=\left(3-m\right)x+4\) đi qua A(1 ; 4)
\(\Leftrightarrow4=\left(3-m\right)\cdot1+4\)
\(\Leftrightarrow4=3-m+4\)
\(\Leftrightarrow4-4=3-m\)
\(\Leftrightarrow m=3\)
b) Ta có hàm số: \(y=mx-x+3=\left(m-1\right)x+3\) y là hàm số bật nhất khi:
\(m+1\ne0\)
\(\Leftrightarrow m\ne1\)
c) Ta có ham số: \(y=\left(m^2-4\right)x-2022\) là hàm số bậc nhất khi:
\(m^2-4\ne0\)
\(\Leftrightarrow m^2\ne4\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ne2\\m\ne-2\end{matrix}\right.\)
d) Ta có 3 hàm số:
\(\left(d_1\right)y=x-2\); \(\left(d_2\right)y=2x-1\); \(\left(d_3\right)=y=\left(m-1\right)x+2m\)
Xét phương trình hoành độ là giao điểm của (d1) và (d2) là:
\(x-2=2x-1\)
\(\Leftrightarrow2x-x=-2+1\)
\(\Leftrightarrow x=-1\)
\(\Rightarrow\left(d_1\right)y=-1-2=-3\)
Nên giao điểm của (d1) và (d2) \(\left(-1;-3\right)\)
\(\Leftrightarrow\left(d_3\right):-3=\left(m-1\right)\cdot-1+2m\)
\(\Leftrightarrow-3=-m+1+2m\)
\(\Leftrightarrow\left(-m+2m\right)=-1-3\)
\(\Leftrightarrow m=-4\)
e) Ta có hàm số: \(y=\left(2a-1\right)x-a+2\) cắt trục hoành tại điểm có hành độ bằng 1
Nên (d) đi qua: \(A\left(1;0\right)\)
\(\Leftrightarrow0=\left(2a-1\right)\cdot1-a+2\)
\(\Leftrightarrow0=2a-1-a+2\)
\(\Leftrightarrow0=a+1\)
\(\Leftrightarrow a=-1\)
\(\left(\frac{2x-1}{x+2}\right)'=\frac{5}{\left(x+2\right)^2}>0\)
Vậy hàm số \(y=\frac{2x-1}{x+2}\) đồng biến trên R. Chọn A.
A. là hàm phân thức bậc nhất trên bậc nhất nên không đồng biến trên \(ℝ\).
B., D. là đa thức, có hệ số cao nhất âm nên cũng không thể đồng biến trên \(ℝ\).
C>: \(\left(x^3+2x+1\right)'=3x^2+2>0,\forall x\inℝ\).
Ta chọn C.