K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

Xét số hạng tổng quát.

Cho k chạy từ 1 đến 2018 ta được:

Cho x=1 suy ra 

Chọn A.

14 tháng 7 2021

9219321938921839289382983928392839238929832

30 tháng 6 2017

lạc đề rùi bn ạ 

30 tháng 6 2017

Trần Ngọc Lâm sao lạc đề bn

17 tháng 11 2018

\(a^3+b^3=c\left(3ab-c^2\right)\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[2a^2+2b^2+2c^2-2ab-2bc-2ca\right]=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(loai\right)\\a=b=c\end{cases}}\)

Mà a + b + c = 3 nên a = b = c = 1

Khi đó \(A=672.\left(1+1+1\right)+2=672.3+2=2018\)

17 tháng 12 2019

Cái này biến đổi dài vl ra í e :>>

Ta có a^3 + b^3 + c^3 -3abc=0 

=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0

=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0

=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0

=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0

=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0

Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0

=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0

=> (a-b)^2 + (b-c)^2 + (c-a)^2=0

Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt

17 tháng 12 2019

thank . Mấy chỗ đó hiểu dc

22 tháng 1 2019

\(\frac{2018}{ab+2018a+2018}+\frac{b}{bc+a+2018}+\frac{c}{ac+c+1}\)

\(a.b.c=2018\Rightarrow a,b,c\ne0\)

Ta có \(\frac{2018}{ab+2018a+2018}\Rightarrow\frac{2018}{b+2018+bc}\)

\(\frac{c}{ac+c+1}=\frac{bc}{abc+bc+b}=\frac{bc}{2018+bc+b}\)

\(\Rightarrow S=\frac{2018}{b+2018+bc}+\frac{b}{bc+b+2018}+\frac{bc}{2018+bc+b}=\frac{2018+b+bc}{b+2018+bc}=1\)

để nghĩ tiếp

22 tháng 1 2019

làm tiếp 

\(\frac{2013x+1}{2014x-2014}=\frac{2013\left(x-1\right)+2014}{2014\left(x-1\right)}=\frac{2013}{2014}+\frac{1}{x-1}\)

\(B_{max}\Leftrightarrow\frac{1}{x-1}max\)

+) Nếu x >1 thì x-1 >0 \(\Rightarrow\frac{1}{x-1}>0\)

+) Nếu x<1 thì x-1 <0 \(\Rightarrow\frac{1}{x-1}< 0\)

Xét x > 1 ta có 

\(\frac{1}{x-1}max\Rightarrow x-1\)là số nguyên dương nhỏ nhất 

\(\Rightarrow x-1=1\Rightarrow x=2\)

Vậy \(Bmax=1\frac{2018}{2019}\Leftrightarrow x=2\)