K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

0,(3).x=1

=>x=0,(3)

NV
2 tháng 1 2024

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{x^3-x^2+2x-2}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^2\left(x-1\right)+2\left(x-1\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2+2\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x^2+2\right)=3\)

\(f\left(1\right)=3.1+m=m+3\)

Hàm số liên tục tại \(x_0=1\) khi và chỉ khi \(\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\)

\(\Rightarrow m+3=3\Rightarrow m=0\)

5 tháng 12 2018

Đáp án B

Ta có: lim x → 3 - y = f 3 = 3 a + 4 ; lim x → 3 + y = 10  

Hàm số đã cho lien tục tại điểm x = 3 khi lim x → 3 - y = f 3 = 3 a + 4 = lim x → 3 + y = 10 ⇔ a = 2 .

4 tháng 2 2017

Đáp án D

5 tháng 8 2017

Dễ thấy: \(x_0;y_0\ne 0\)

*)Xét \(x_0;y_0>0\) xài BĐT AM-GM

\(x^3+y^3+1\ge3\sqrt[3]{x^3y^3}=3xy\)

Xảy ra khi \(x=y=1\)

Khi đó \(\left(1+x_0\right)\left(1+\dfrac{1}{y_0}\right)\left(1+\dfrac{x_0}{y_0}\right)=8\)

*)Xét \(x_0;y_0<0\)\(\Rightarrow3xy>0;x^3+y^3+1\le0\) (loại)

5 tháng 8 2017

Bạn trả lời chi tiết hơn được ko

AH
Akai Haruma
Giáo viên
27 tháng 2 2022

Lời giải:
Để hàm số trên liên tục tại $x_0=0$ thì:
\(\lim\limits_{x\to 0+}f(x)=\lim\limits_{x\to 0-}f(x)=f(0)\)

\(\Leftrightarrow \lim\limits_{x\to 0+}(a+\frac{4-x}{x+2})=\lim\limits_{x\to 0-}(\frac{\sqrt{1-x}+\sqrt{1+x}}{x})=a+2\)

\(\Leftrightarrow a+2=\lim\limits_{x\to 0-}\frac{\sqrt{1-x}+\sqrt{1+x}}{x}\)

Mà \(\lim\limits_{x\to 0-}\frac{\sqrt{1-x}+\sqrt{1+x}}{x}=-\infty \) nên không tồn tại $a$ để hàm số liên tục tại $x_0=0$

21 tháng 10 2023

a: \(f\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-2=\dfrac{1}{4}+\dfrac{1}{2}-2=\dfrac{3}{8}-2=\dfrac{3-16}{8}=-\dfrac{13}{8}\)

b: \(f\left(\sqrt{3}\right)=\dfrac{2\sqrt{3}}{\left(\sqrt{3}\right)^2+1}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)

17 tháng 5 2018

Ta có d: −2x + y = 3 ⇔ y = 2x + 3 và d’: x + y = 5y = 5 – x

Xét phương trình hoành độ giao điểm của d và d’: 2x + 3 = 5 – x ⇔ x = 2 3

⇒ y = 5 – x = 5 − 2 3 = 13 3

Vậy tọa độ giao điểm của d và d’ là 2 3 ; 13 3

Suy ra nghiệm của hệ phương trình − 2 x + y = 3 x + y = 5 là 2 3 ; 13 3

Từ đó y 0 – x 0 = 13 3 − 2 3 = 11 3

Đáp án: A

21 tháng 1 2018

Đáp án D

Điểu kiện 

Xét -6 < x < 4, khi đó áp dụng công thức  ta có:

 

 

=> hàm số đã cho nghịch biến trên -6 < x ≤ 4

Vì vậy, hàm số đạt giá trị nhỏ nhất tại x0 = 4

22 tháng 2 2019