Cho P=\(\left(x^2+1\right)^2+\left(x^2+x\right)^2\)- 3. Tính giá trị nhỏ nhất của P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: ( x-2)2 \(\ge\) 0 , \(\forall\) x
=> ( x-2)2 +2023 \(\ge\) 2023
Vậy ...
Dấu bằng xảy ra khi x-2 = 0
b. (x-3)2+(y-2)2-2018
Ta có: \((x-3)^2 \ge0,\forall x\)
\((y-2) ^2 \ge0,\forall y\)
=> ( x-3)2 + ( y-2)2 \(\ge\) 0
=> ( x-3)2 + ( y-2)2-2018 \(\ge\) -2018, \(\forall\) x,y
Vậy ...
Dấu bằng xảy ra khi x-3=0
y-2=0
c. ( x+1)2 +100
Ta có : ( x+1)2 \(\ge0,\forall x\)
=> ( x+1)2+100 \(\ge\) 100
Vậy ...
Dấu bằng xảy ra khi x+1=0
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|5-x\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu "=" khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Vậy với \(2\le x\le3\) thì B đạt GTNN là 5
a, A = (x-1)(x+6) (x+2)(x+3)
= (x^2 + 5x -6 ) (x^2 + 5x + 6)
Đặt t = x^2 +5x
A= (t-6)(t+6)
= t^2 - 36
GTNN của A là -36 khi và ck t= 0
<=> x^2 +5x = 0
<=> x=0 hoặc x=-5
Vậy...
Có: \(\begin{cases}\left|x-1\right|\ge x-1\\\left|x-2\right|\ge x-2\\\left|x-3\right|\ge3-x\\\left|x-4\right|\ge4-x\end{cases}\)\(\forall x\)
\(\Rightarrow B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-1\right)+\left(x-2\right)+\left(3-x\right)+\left(4-x\right)\)
\(\Rightarrow B\ge4\)
Dấu "=" xảy ra khi \(\begin{cases}x-1\ge0\\x-2\ge0\\x-3\le0\\x-4\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Rightarrow2\le x\le3\)
Vậy với \(2\le x\le3\) thì B đạt GTNN là 4
A = [(x +1).(x - 6)].[(x - 2).(x - 3)] = (x2 - 5x - 6). (x2 - 5x + 6)
Đặt t = x2 - 5x => A = (t - 6).(t + 6) = t2 - 36 \(\ge\) 0 - 36 = -36 với mọi t
Dấu "=" xảy ra khi t = 0 <=> x2 - 5x = 0 <=> x = 0 hoặc x = 5
Vậy GTNN của A bằng -36 tại x = 0 hoặc x = 5
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-1|+|x-2021|=|x-1|+|2021-x|\geq |x-1+2021-x|=2020$
$|x-2|+|x-2020|=|x-2|+|2020-x|\geq |x-2+2020-x|=2018$
..............
$|x-1010|+|x-1012|\geq |x-1010+1012-x|=2$
Cộng theo vế thu được:
$G\geq 2020+2018+2016+...+2+|x-1011|$
$G\geq 1021110+|x-1011|\geq 1021110$
Vậy $G_{\min}=1021110$
Giá trị này đạt tại:
\(\left\{\begin{matrix} (x-1)(2021-x)\geq 0\\ (x-2)(2020-x)\geq 0\\ .....\\ (x-1010)(1012-x)\geq 0\\ x-1011=0\end{matrix}\right.\Leftrightarrow x=1011\)
a,\(f\left(\sqrt{a}\right)=\left(\sqrt{a}\right)^2-\sqrt{a}-2=a-\sqrt{a}-2\)
\(\sqrt{f\left(a\right)}=\sqrt{a^2-a-2}\)
\(f\left(a^2\right)=\left(a^2\right)^2-a^2-2=a^4-a^2-2\)
\(\left[f\left(a\right)\right]^2=\left(a^2-a-2\right)^2\)
b,\(f\left(x\right)=x^2-x-2=x^2-2\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}-2\)
\(f\left(x\right)=\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow GTNN\)của \(f\left(x\right)=\frac{-9}{4}\Leftrightarrow x=\frac{1}{2}\)