cho a/2b+c = b/2c+a = c/2a+b ( a,b,c>0). Tính giá trị của mỗi tỉ số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2c+b}=\frac{a+b+c}{2b+c+2c+a+2c+b}\)\(=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Vậy ...
cho \(\frac{a}{2b+c}\)=\(\frac{b}{2c+a}\)= \(\frac{c}{2a+b}\) (a,b,c >0), Tính giá trị của mỗi tỉ số
Nửa chu vi hình chữ nhật là:
32:2=16(cm)
Gọi chiều dài là a
Chiều rộng là b
Theo đề ta có: \(\frac{b}{a}=0,6\)
hay \(\frac{b}{a}=\frac{6}{10}\)
\(\Rightarrow\frac{b}{6}=\frac{a}{10}\)
\(\frac{b+a}{6+10}=\frac{16}{16}\)\(\Rightarrow\)\(\frac{b}{6}=\frac{a}{10}=1\)
b= 1.6=6
a=1.10=10
Chiều dài là 10 cm
Chiều rộng là 6 cm
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{1}{3\left(a+b+c\right)}=\frac{1}{3}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2b+2c+2a}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b=3a-c\)\(\dfrac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c=3b-a\)
\(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a=3c-b\)
\(P=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{2a.2b.2c}=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{8abc}\)
b.\(ĐK:x;y\in Z^+;x;y\ne0\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{5}{x}+\dfrac{5}{y}=1\)
\(\Leftrightarrow\dfrac{5}{x}=1-\dfrac{5}{y}\)
\(\Leftrightarrow\dfrac{5}{x}=\dfrac{y-5}{y}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{y-5}\)
\(\Leftrightarrow x=\dfrac{5y}{y-5}\)
\(\Leftrightarrow x=5+\dfrac{25}{y-5}\) ( bạn chia \(5y\) cho \(y-5\) ý )
Để x;y là số nguyên dương thì \(25⋮y-5\) hay \(y-5\in U\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
TH1:
\(y-5=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=30\end{matrix}\right.\) ( tm ) ( bạn thế y=6 vào \(x=5+\dfrac{25}{y+5}\) nhé )
Xét tương tự, ta ra được nghiệm nguyên dương của phương trình:
\(\left\{{}\begin{matrix}x=30\\y=6\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=10\\y=10\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=6\\y=30\end{matrix}\right.\)
Câu a mik ko bt nên bạn tham khảo nhé:
https://hoc24.vn/cau-hoi/cho-a-b-c-0-va-day-ti-so-dfrac2bc-aadfrac2c-babdfrac2ab-cctinh-p-dfracleft3a-2brightleft3b-2crightleft.177725456910
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{\left(2b+c\right)+\left(2c+a\right)+\left(2a+b\right)}=\frac{a+b+c}{3a+3b+3c}=\frac{1}{3}\)
Vậy giá trị mỗi tỉ số là \(\frac{1}{3}\)
lê đức anh sai nha
Nếu a+b+c = 0 thì không thể bằng 1/3 đc nha