K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

chtt hay tick rồi làm thì next lun nhé

30 tháng 12 2015

cách ngắn như sau
Căn(5x^2+14x+9) = Căn(x^2-x-20) +5căn(x+1)

1 tháng 11 2019

ĐK: \(x\ge5\)

Chuyển vế, bình phương ta đc:

\(\sqrt{5x^2+14x+9}=5\sqrt{\left(x^2-x-20\right)\left(x+1\right)}\)

Nhận xét:

Không tồn tại số \(\alpha,\beta\) để: \(2x^2-5x+2=\alpha\left(x^2-x-20\right)+\beta\left(x+1\right)\)

Ta có: \(\left(x^2-x-20\right)\left(x+1\right)=\left(x+4\right)\left(x-5\right)\left(x+1\right)=\left(x+4\right)\left(x^2-4x-5\right)\)

PT đc vt lại là: \(2\left(x^2-4x-5\right)+3\left(x+4\right)=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)

Đặt: \(\left\{{}\begin{matrix}u=x^2-4x-5\\v=x+4\end{matrix}\right.\)

Khi đó PT trở thành:

\(2u+3v=5\sqrt{uv}\Leftrightarrow\left[{}\begin{matrix}u=v\\u=\frac{9}{4}v\end{matrix}\right.\)

Xét \(u=v\) ta có PT:

\(x^2-4x-5=x+4\Leftrightarrow x^2-5x+9=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{61}}{2}\\x=\frac{5-\sqrt{61}}{2}\left(loại\right)\end{matrix}\right.\)

Xét \(u=\frac{9}{4}v\) ta có PT:

\(x^2-4x-5=\frac{9}{4}\left(x+4\right)\Leftrightarrow4x^2-25x-56=0\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{7}{4}\left(loại\right)\end{matrix}\right.\)

Vậy PT có 2 nghiệm là \(x=8;x=\frac{5+\sqrt{61}}{2}\)

29 tháng 7 2019

\(\sqrt{\left(x-1\right)\left(x+1\right)}-\sqrt{\left(x-1\right)\left(-x+9\right)}-\sqrt{\left(2x-12\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-\sqrt{9-x}-\sqrt{2x-12}\right)=0\)

giải nốt nhá

sai thfi thông cảm nha

2 tháng 9 2021

Bài 2:

a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)

b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)

c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)

d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)

f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)

g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)

i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)

 

a: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=\left(x+1\right)\left(3x-10\right)\)

b: \(x^2+6x+9-4y^2\)

\(=\left(x+3\right)^2-4y^2\)

\(=\left(x+3-2y\right)\left(x+3+2y\right)\)

c: \(x^2-2xy+y^2-5x+5y\)

\(=\left(x-y\right)^2-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-5\right)\)

30 tháng 12 2015

ai trả lời là chtt thì xin mời biến

30 tháng 12 2015

k phải nói giỏi phương trình lắm mà

11 tháng 2 2020

ĐK: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{5x^2+14x+9}=5\sqrt{x+1}+\sqrt{x^2-x-20}\)

Bình phương 2 vế, ta đc:

\(5x^2+14x+9=25x+5+x^2-x-20+10\sqrt{\left(x+1\right)\left(x^2-x-20\right)}\)

\(\Leftrightarrow5x^2+14x+9-25x-5-x^2+x+20=10\sqrt{\left(x+1\right)\left(x+4\right)\left(x-5\right)}\)

\(\Leftrightarrow4x^2-10x+4=10\sqrt{\left(x+1\right)\left(x-5\right)\left(x+4\right)}\)

\(\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)

\(\Leftrightarrow2\left(x^2-4x-5\right)+3\left(x+4\right)=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)

Đặt \(\sqrt{x^2-4x-5}=a\left(a\ge0\right);\sqrt{x+4}=b\left(b\ge3\right)\)

Khi đó,pt trở thành \(2a^2+3b^2=5ab\Leftrightarrow2a^2-2ab+3b^2-3ab=0\)

\(\Leftrightarrow2a\left(a-b\right)+3b\left(b-a\right)=0\Leftrightarrow\left(2a-3b\right)\left(a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\)

Với a=b \(\Rightarrow\sqrt{x^2-4x-5}=\sqrt{x+4}\Leftrightarrow x^2-5x-9=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{61}}{2}\left(tmdk\right)\\x=\frac{5-\sqrt{61}}{2}\left(loai\right)\end{matrix}\right.\)

Với 2a=3b \(\Rightarrow2\sqrt{x^2-4x-5}=3\sqrt{x+4}\Leftrightarrow4\left(x^2-4x-5\right)=9\left(x+4\right)\)

\(\Leftrightarrow4x^2-25x-56=0\Leftrightarrow\left[{}\begin{matrix}x=8\left(tmdk\right)\\x=\frac{-7}{4}\left(loai\right)\end{matrix}\right.\)

Vậy ...

11 tháng 2 2020

đánh nhầm r, dòng 4 vs 5 bạn sửa 25x+5 thành 25x+25 nha, dòng 5 cx -5 thành -25

AH
Akai Haruma
Giáo viên
10 tháng 11 2020

Lời giải:

ĐKXĐ:.............

PT $\Leftrightarrow \sqrt{5x^2+14x+9}=\sqrt{x^2-x-20}+5\sqrt{x+1}$

$\Rightarrow 5x^2+14x+9=x^2+24x+5+10\sqrt{(x^2-x-20)(x+1)}$

$\Leftrightarrow 4x^2-10x+4=10\sqrt{(x^2-x-20)(x+1)}$
$\Leftrightarrow 2x^2-5x+2=5\sqrt{(x+4)(x-5)(x+1)}$

$\Leftrightarrow 2(x^2-4x-5)+3(x+4)=5\sqrt{(x+4)(x^2-4x-5)}$

Đặt $\sqrt{x^2-4x-5}=a; \sqrt{x+4}=b$ với $a,b\geq 0$

Khi đó: $2a^2+3b^2=5ab$

$\Leftrightarrow (a-b)(2a-3b)=0$

$\Rightarrow a=b$ hoặc $a=1,5b$

Đến đây thì đơn giản rồi.

Đáp số: $x=8$ hoặc $x=\frac{5+\sqrt{61}}{2}$