K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

Khai triển nhị thức Niutơn của  ta có

Cho x = 1, ta được 

Chọn A.

NV
23 tháng 4 2022

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^nC_n^n\)

Đạo hàm 2 vế:

\(n\left(1+x\right)^{n-1}=C_n^1+2xC_n^2+...+n.x^{n-1}C_n^n\)

Thay \(x=1\)

\(\Rightarrow n.2^{n-1}=C_n^1+2C_n^2+...+nC_n^n\)

\(\Rightarrow n.2^{n-1}+1=C_n^0+C_n^1+2C_n^2+...+nC_n^n\)

\(\Rightarrow S=n.2^{n-1}+1\)

Chọn C

NV
22 tháng 4 2022

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^nC_n^n\)

Đạo hàm 2 vế:

\(n\left(1+x\right)^{n-1}=C_n^1+2xC_n^2+...+nx^{n-1}C_n^n\)

Tiếp tục đạo hàm 2 vế:

\(\left(n-1\right)n\left(1+x\right)^{n-2}=2C_n^2+2.3xC_n^3+...+\left(n-1\right)nx^{n-2}C_n^n\)

Thay \(x=1\)

\(\Rightarrow\left(n-1\right)n.2^{n-2}=1.2C_n^2+2.3C_n^3+...+\left(n-1\right)nC_n^n\)

\(\Rightarrow\left(n-1\right)n.2^{n-2}+n=C_n^1+1.2C_n^2+...+\left(n-1\right)n.C_n^n\)

\(\Rightarrow S=\left(n-1\right)n.2^{n-2}+n\)

NV
26 tháng 2 2020

\(lim\left(\frac{3n+2}{n+2}+a^2-4a\right)=lim\left(\frac{3+\frac{2}{n}}{1+\frac{2}{n}}+a^2-4a\right)=a^2-4a+3\)

\(\Rightarrow a^2-4a+3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\)

\(\Rightarrow S=4\)