K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

Chọn B.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.11) Lấy điểm M 0  cố định trên đường tròn (C).

Gọi ( α ) là mặt phẳng trung trực của A M 0  và đường thẳng Δ là trục của (C)

Ta có: I = ( α ) ∩ ∆ là tâm mặt cầu thỏa mãn yêu cầu đề bài.

Nhận xét: Tâm I là duy nhất. Thật vậy, giả sử M nằm trên đường tròn (C) khác với  M 0

Gọi ( α ') là mặt phẳng trung trực của AM và I' = ( α ')  ∩  

Khi đó, mặt cầu tâm I' thỏa mãn yêu cầu đề bài.

Ta có: I'A = I'M = I' M 0 cho ta I' thuộc mặt phẳng trung trực (α) của A M 0

Suy ra: I' = (α)  ∩  

Vậy I' ≡ I

15 tháng 1 2017

Đáp án A

Ba điểm A,B,C tạo thành một tam giác. Có 4 đường tròn tiếp xúc với cả ba đường thẳng AB,AC,BC (hình vẽ trên).

Mặt cầu (S) cần tìm tiếp xúc với 3 đường thẳng AB,AC,BC, do đó nó phải chứa 1 trong 4 đường tròn trên.

Xét với 1 đường tròn bất kì trong 4 đường tròn trên, giả sử là đường tròn tâm (O) nằm bên trong tam giác, ta có:

Tâm I của mặt cầu (S) phải nằm trên đường thẳng d đi qua tâm O và vuông góc với (ABC). Mặt khác, I thuộc mp (P) chứa (C), (C) lại không vuông góc với (ABC) do đó chỉ có 1 giao điểm của d với (P). Tương tự, với 3 đường tròn còn lại, với mỗi đường tròn ta tìm được 1 tâm I nữa. Vậy có 4 mặt cầu thỏa mãn yêu cầu.

30 tháng 4 2017

19 tháng 7 2019

Đáp án đúng : D

20 tháng 8 2018

Đáp án đúng : C

a: góc OHK+góc OBK=180 độ

=>OHKB nội tiếp

b: góc AHK=góc AOK

góc BHK=góc BOK

mà góc AOK=góc BOK

nên góc AHK=góc BHK

=>HK là phân giác của góc AHB

a: Xét tứ giác CMON có \(\widehat{CMO}+\widehat{CNO}=90^0+90^0=180^0\)

nên CMON là tứ giác nội tiếp

=>C,M,O,N cùng thuộc một đường tròn

b: Xét (O) có

\(\widehat{CMA}\) là góc tạo bởi tiếp tuyến MC và dây cung MA

\(\widehat{ABM}\) là góc nội tiếp chắn cung AM

Do đó: \(\widehat{CMA}=\widehat{ABM}=\widehat{CBM}\)

Xét ΔCMA và ΔCBM có

\(\widehat{CMA}=\widehat{CBM}\)

\(\widehat{MCA}\) chung

Do đó: ΔCMA~ΔCBM

=>\(\dfrac{CM}{CB}=\dfrac{CA}{CM}\)

=>\(CM^2=CA\cdot CB\)

c: Xét (O) có

CM,CN là các tiếp tuyến

Do đó: CM=CN

=>C nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1),(2) suy ra OC là đường trung trực của MN

=>OC\(\perp\)MN tại H

Xét ΔCMO vuông tại M có MH là đường cao

nên \(CH\cdot CO=CM^2\)

=>\(CH\cdot CO=CA\cdot CB\)

=>\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)

Xét ΔCHA và ΔCBO có

\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)

\(\widehat{HCA}\) chung

Do đó: ΔCHA~ΔCBO

=>\(\widehat{CHA}=\widehat{CBO}\)

mà \(\widehat{CBO}=\widehat{OAB}\)(ΔOAB cân tại O)

nên \(\widehat{CHA}=\widehat{OAB}\)