K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

từ a/(b+c)= b/(a+c)=c/(a+b) suy ra được 2 trường hợp: 

a=b=c thế vào tìm ra kết quả là 3/2                     hoặc a+b+c=0 thế vào tìm được kết quả là -3

30 tháng 10 2017

đặt P = \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Cộng 1 vào mỗi tỉ số , ta được :

\(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)( 1 )

Xét a + b + c = 0 \(\Rightarrow\)a + b = -c ; a + c = -b ; b + c = -a

\(\Rightarrow P=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

Xét a + b + c \(\ne\)0 thì từ ( 1 ) , ta có :

a = b = c \(\Rightarrow\)P = \(\frac{3}{2}\)

12 tháng 10 2017

cho a,b,c là số thực khác 0 ak?

a: Theo đề, ta có: 

\(\dfrac{2a}{3}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)

\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}=\dfrac{a-2b+c+2-2}{\dfrac{3}{2}-2\cdot4+5}=\dfrac{1}{-\dfrac{3}{2}}=-\dfrac{2}{3}\)

Do đó: a=-1; b-1=-8/3; c-2=-10/3

=>a=-1; b=-5/3; c=-4/3

b: Theo đề, ta có:

\(\dfrac{2a}{20}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)

hay \(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}=\dfrac{a-2b+c+2-2}{10-2\cdot15+12}=\dfrac{1}{-8}=\dfrac{-1}{8}\)

Do đó: a=-5/4; b-1=-15/8; c-2=-3/2

=>a=-5/4; b=-7/8; c=1/2

7 tháng 1 2016

S = - a + b + c - c + b + a - a - b

S = - a

Vì a = 1 => S = -1

7 tháng 1 2016

S = -(a - b - c) + (-c + b + a) - (a + b)

= -a + b + c - c + b + a - a - b

= (-a + a - a) + (b + b - b) + (c - c)

= -a + b

= -1 + b = b - 1

29 tháng 6 2018

Từ 2 giả thiết: \(a+b+c=2018;\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{6}{2018}\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2018.6}{2018}=6\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=6\)

\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=6\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=3\)

Vậy giá trị của biểu thức đó là 3.

10 tháng 8 2016

a) a,b,c,d tỉ lệ với 2,5,7,6

\(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{d}{6}\). Áp dụng tính chất dãy tỉ bằng nhau

\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{d}{6}=\frac{a+b+c+d}{2+5+7+6}=\frac{7820}{20}=391\)

  • Với \(\frac{a}{2}=391\Rightarrow a=782\)
  • Với \(\frac{b}{5}=391\Rightarrow b=1955\)
  • Với \(\frac{c}{7}=391\Rightarrow c=2737\)
  • Với \(\frac{d}{6}=391\Rightarrow d=2346\)