Giải hệ PT sau:
\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=xy\)
\(x^4+y^4=8\sqrt{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5 .\(\frac{x}{\sqrt{2\left(y^2+z^2\right)-x^2}}=\frac{\sqrt{3}x^2}{\sqrt{3}x\sqrt{2\left(y^2+z^2\right)-x^2}}\ge\frac{\sqrt{3}x^2}{x^2+y^2+z^2}\)
TT=>VT2>=VP2
6.\(1+\sqrt{y-1}\ge1\)
\(\frac{1}{y^2}-\left(x+z\right)^2\le1\)
=>VT1>=VP1
10b pt1\(\Leftrightarrow\left(y-3x\right)\left(y^2-y+1\right)=0\)
Hôm nay sol vài bài trên olm rồi off tiếp
\(\sqrt{xy+y}=\sqrt{y\left(x+1\right)}\)
ĐKXĐ: \(x>-1,y>0\)
Đặt \(\sqrt{x+1}=a;\sqrt{y}=b\left(a,b>0\right)\)
HPT \(\Leftrightarrow\hept{\begin{cases}a^2-1+\frac{1}{a}=\frac{4}{a+b}-1\\b^2+\frac{1}{b}=2ab\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^4+a^3b-3a+b=0\\2ab^2-b^3-1=0\end{cases}}\)
PT(2) \(\Leftrightarrow2ab^2=\left(b+1\right)\left(b^2-b+1\right)\Rightarrow a=\frac{\left(b+1\right)\left(b^2-b+1\right)}{2b^2}\)
Thay ngược lên pt(1) tương đương \(\left(3b^6+8b^3+1\right)\left(b^3-1\right)^2=0\)
\(\Rightarrow b=1\rightarrow a=1\)
HPT có nghiệm duy nhất a = b = 1